Legnaro (Padova) April 4, 2005

Concepts, Physical Quantities, and Radiation Environments

Concetti, Grandezze Fisiche e ambienti di Radiazione

Prof. Jeffery Wyss University of Cassino INFN PISA

Original Title: *"Low Intensity Exposure to Radiation Concepts"*

PART 1 OVERTURE(to relax)

₽

pedestrian introduction

sore feet? blisters?

radiation concepts, quantities, environments

to

PART 2 overview of radiation issues and assurance of electronics

lighter, schematic more useful !? Glance thru for rest of this school.

borealis: haunting beauty http://www.geo.mtu.edu/weather/aurora/images/

Victor Hess discovered cosmic rays in 1912 in balloon

A dangerous discipline! but full of treasures

fundamental role of cosmic ray research in history particle physics theory (interactions) and techniques

visual techniques (need trigger!)

fundamental role of cosmic ray research in history of techniques: *counting experiments* hodoscope of gieger counters electroscope 1 electroscope 2 Wulf electroscope coincidence setup true modern electronic coincidence circuit G (Bruno Rossi) G G12

cosmic shower composition (actors of elementary particle physics)

extensive hadronic air-showers

Pfotzer (1936) discovered maximum ionisation at ~ 15 km altitude ⇒ thick atmosphere sustains stable life at sea level

NOTE: neutron flux at sea (ground) level 10⁵ neutrons/cm²-year with E>20 MeV which may cause SEE

ICARUS (electronic with visual quality) spectacular air-shower event

detectors: cartoon

composed of dedicated (specialized) detectors and elements

space detector

CGRO/EGRET gamma detection

• 3EG catalogue, 271 point sources

most blazars,

5 pulsars,

- **170** unidentified
- map of galactic background

- closely spaced spark chamber for tracking
- Widely spaced spark chamber for TOF
- Nal(TI) electromagnetic calorimeter (7.7 X₀)
- Plastic scintillator anticoincidence dome
- Energy resolution ~10%
- Angular res. 10° (60 MeV) to 1° (10 GeV)
- Problems from backsplash from the CAL: the anticoincidence was too close

overview

RADIATION: ubiquitous, problem, hazard, tool

NATURAL human environment (all of us)	EXTENDED NATURAL environment	ARTIFICIAL environment
 natural radioactivity of materials sea level cosmics 	 satellites (various orbits) deep space missions shuttle high altitude avionics 	 HEP experiments (collider halls) radiation therapy facilities industrial accelerators and sources nuclear plants

accelerator environments				
SCIENCE	MEDICINE	INDUSTRIAL		
 High Energy Physics structure of matter (synchrotron facilities) materials science 	 diagnostics (X-rays, PET) artificial isotopes oncologic treatment . 	 plastics composite materials ecology semiconductors 		

CONCLUSIONS: studying radiation effects NEED TO define

quality of radiation
flux/fluence (how many!); i.e. cross-sections
source predictable or stochastic

- properties of target

 material (silicon, plastic, water...)
 active devices (memories, diodes,..., *living cells*)
 active volumes (different sensitivities, how many, where, ...)

• are there predictable or stochastic effects?

what is correct variable? (dose, fluence, 1-MeV equivalent neutron fluence for NIEL; LET, fluence hadrons E > 20 MeV for SEE)

 any normalisation factors? (scaling, NIEL-hypothesis, quality factors, radiobiological equivalents)

any role of microenvironment? (parasite structures such as latch-up in CMOS; bystander effect)

• any relaxation effects? (annealing, adaptive response)

- are there dose rate/flux effects?
 - are there low dose effects?

Radiation environment:

- natural (radioactivity of materials, geological, technological history)
- prompt (directly associated with accelerated beam or exposure; ON/OFF)
- **induced** (residual activation with beam off due to previous exposure; half-life)

interactions

Charged particles (protons, ions, electrons,, muons, charged pions, kaons,...):

- COULOMB INTERACTIONS with electrons (ionization), and with nuclei (displacement damage).
- CHARGED PARTICLE DECELERATION causes photon emission (Bremsstrahlung) with continuous spectra (mainly for electrons).
- NUCLEAR INTERACTIONS (mainly for energetic hadrons: protons, pions, kaons).

Photons:

- photoelectric effect
- Compton effect
- pair production

Neutrons:

- Ionization cannot be induced but by secondary charged particles.
- Neutron capture/spallation/inelastic scattering: formation of excited composite nucleus followed by de-excitation and emission of γ -rays, particles (α , $\beta^{+/-}$, n, p), nuclear fragments
- Elastic scattering with nuclei (\Rightarrow displacement damage)

produce secondary electrons/positrons (extra slides)

basic radiation damage measurement quantities

- Flux (φ) is no. of particles per unit area and per unit time: Formula
 Measurement Unit
- $\phi = \text{Particles}/(\text{Area} \times \text{Time})$

Particles/(cm²×s)

• Fluence (Φ) is no. of particles per unit area (time integral of the flux): Formula Measurement Unit $\Phi = \int \phi dt = Particles/Area$ Particles/cm²

 Dose (D) is energy by radiation per unit mass: 		
Formula	Measurement Unit	
D=E/M	J/kg	

Energy deposited into a block of matter of a certain mass:

 generic DOSE = energy imparted by radiation mass of target

ullet dose scales with fluence igoplus

dose (energy/mass) \propto fluence (length⁻²)

proportionality dose (energy/mass) = factor(energy-length²/mass) × fluence (length⁻²)

The ways a particle can transfer (deposit) energy to medium:

- ionising energy loss → total ionising dose (TID)
- non-ionising energy loss (NIEL) → displacement damage dose (DDD)

Doses: TID, DDD \Rightarrow factors: LET, NIEL

dose (energy/mass) = factor(energy-length²/mass) × fluence (length⁻²)

A charged particle travelling thru a medium

ionisation

Coulomb interaction with atomic electrons or with the nucleus: atom of medium incoming charged particle M, Z_{proj}e, V nucleus + Z_{targ}e atomic electron the radius of nucleus $R_{nucleus} \sim 10^{-14} m$ the radius of atom $R_{atom} \sim \! 10^{-10} \ m$ number of interaction with electrons $=\frac{R_{atom}^2}{R} \approx 10^8$ number of interaction with nuclei

regards energy transfers coulomb collisions with electrons are much more important than with nuclei (except when very SLOW at end of range!)

ionisation Action of coulomb force, over a period of time (transit time)

transfer momentum and energy the bound electron. *Might* result in ionisation or excitation (inelastic collisions). (in elastic collisions particle loses energy to conserve momentum and KE)

IONISATION: KE_{electron} = energy given by particle - ionisation potential The freed electron will also interact; i.e. it will ionise and excite, lose KE and stop. Fast secondary electrons are called *delta-rays*.

EXCITATION: ... X-rays by de-excitation,...

lose small amounts of energy per coulomb collision: are <u>hardly deflected by atomic electrons</u> do get deflected by rare close-by interaction with nuclei (multiple scattering) BUT the overall trajectory is <u>almost a straight line</u>!!! RANGE = $\int \left(\frac{dE}{dx}\right)^{-1} dE$ thickness of medium for which kinetic energy of incident particle is spent WELL DEFINED TOTAL stopping power **dE/dx** $dE/dx = dE/dx_{ionization} + dE/dx_{nuclear coulomb} = LET + NIEL$ NOTE: both change along track as particle slows down to stop (thermal)

max LET does not simply scale

ion	LET _{Min}	LET _{Max}	E _{Max}	Range at E _{max}
	(MeV-cm ² /mg)	(MeV-cm²/mg)	(MeV)	(μm)
Н	1.665 × 10 ⁻³	0.53	0.08	0.92
α	6.67 × 10 ⁻³	1.57	0.47	2.21
¹² C ₆	0.06	5.38	2.42	3.06
¹⁶ O ₈	0.11	7.46	5.54	4.98
²⁵ Mg ₁₂	0.24	12.18	16.74	7.52
²⁸ Si ₁₄	0.33	14.57	22.46	8.45
³⁵ Cl ₁₇	0.48	18.13	33.4	10.13
⁵⁸ Ni ₂₈	1.3	31	87.8	15.73

elastic nucleon-Silicon	$n + {}^{28}Si \rightarrow n + {}^{28}Si$ with high LET recoiling Silicon
inelastic nucleon-Silicon	$n + {}^{28}Si \rightarrow \alpha + {}^{25}Mg \qquad Q = -2.6 \text{ MeV}$ $p + {}^{28}Si \rightarrow \alpha + {}^{25}AI \qquad Q = -7.7 \text{ MeV}$ reactions with high LET fragments

from SRIM simulation (http://www.srim.org).

1 hundred O¹⁶ in silicon (SRIM 2003)

LET(0) decreases monotonically with E!

physical quantities

1 hundred Br⁷⁹ in silicon (SRIM 2003)

E (MeV)

physical quantities total stopping power of a heavy ion: dE/dx = (dE/dx)_{ionization} + (dE/dx)_{nuclear coulomb} = LET + NIEL

WARNING: an electron (positron) projectile behaves quite differently:

- may collide with an atomic electron and lose ALL its energy in a single collision!
 - IN GENERAL: incident electrons and positrons may lose a large fraction of their kinetic energy in one collision

are easily scattered to large angles hence their trajectories are VERY ZIG-ZAG

EGS to order

http://www2.slac.stanford.edu/vvc/egs/advtool.html

physical quantities range not well defined for electrons

energy deposited per unit path length due to ionization; i.e. the coulomb interaction of the impinging particle with the electrons of the material causing ionization.

LET, FLUENCE and Total Ionising DOSE (TID) are interrelated

 $TID(rad) = 1.602 \times 10^{-5} \times fluence(\#/cm^2) \times LET(MeV-cm^2/mg)$

HOWEVER... caution!

physical quantities DOSE: energy absorbed per unit mass

Common radiobiological X-ray doses (100 rad = 1 Gray) produce a uniform pattern of ionisation in target (cell, tissue, patient). In the center of a SINGLE ION TRACK the local dose may be thousands of Gray but fall close to zero just just a few microns away!

track structure

track structure

OUTSIDE CORE the ionisation density is determined by **energy** and **radial** distributions of secondary electrons • exponential decrease of ionisation density with distance from track; radial extent of ionisation scales with the **velocity V of ion** (indeed the <u>max energy transfer to electrons is 2m_eV²</u>)

 height (intensity) of ionisation scales with velocity V and with effective charge Z_{effective} of ion and with velocity of ion

 $dE_{ion}/dx \propto Z_{eff}^{2}/v^{2}$

τ = duration to describe temporal variation (gaussian) of generation rate;
 Includes the time of flight of the primary ion and the secondary electrons across the sensitive volume and the relaxation time of the generated carrierers.
 Of the order 10⁻¹² s

example: for 158 MeV ⁷⁹Br g(r,z,t) = 4.8×10^{31} (e-h/cm³-s) \times exp(-r²/r₀²) \times exp(-t²/ τ^2)

M. M. Shapiro, R. Silberberg (1970). Ann. Rev. Nucl. Sci., 20, 328

physical quantities Effects of typical lonising Radiation Doses

ionising dose = energy imparted by ionising radiation mass of target 1 J/kg = 1 Gray (Gy) = 100 rad

radiobiological doses

- < 5 mGy: typical annual dose of human in *civilized* culture
- 50 mGy: allowable annual dose for radiation worker
- 1 Gy: common dose of X-ray treatment
- 2.5 Gy: total-body lethal dose for humans and many mammals
- 60 Gy: localized dose for full cancer therapy

technological/industrial doses

- < 1 kGy: Teflon structurally unstable</p>
- 15-35 kGy: sterilization
- 20 kGy (2 Mrad): curing of polyester resins
- 100-200 kGy (10-20 Mrad): curing of epoxy resins
- 200 kGy: natural rubber unusable
- 1000 kGy (100 Mrad): polyvinylchloride (PVC) unusable
- 50-100 MGy: polyimide degraded significantly

industrial process: cross-linking of polymers 30-50 kGy

Life in space

its a tough life in space

- Skylab mission 2500 mrad = 0.025 Gy
- orbits 250-300 km at 65° (resp. equator) 10 mrad/day
- pass thru Van Allen 0.1-0.2 Gy/hr (passage lasts10-20 min)
- Shuttle ~ 433 mrem/mission average skin dose
- Shuttle 7864 mrem highest skin dose
- CT scan 700 mrem/event
- X-ray diagnostic 100-200 mrem/event
- human natural sources (cosmic, radioactivity) 80 mrem/yr

• active Sun (every 11 yrs) may expel intense clouds of protons that deliver doses of 0.3-3 Gy/3 days (Townsend, Shinn, Wilson, *Radiation Research 126:108-110*);

• NOTE: ~ 1/2 of cells of crew members of round trip to Mars will be traversed by at least one galactic cosmic rays with high charge and energy (HZE) (Setlow, *Mutation Research 430:169-175*)

rad-hard bacteria

deinococcus radiodurans

strong ionization effects: SEE Single Event Effects (SEE)

A single particle produces enough ionisation (directly or indirectly) causing a macroscopic (anomalous) effect in a polarized device. Threshold effect: requires a large energy deposition in a sensitive part of a chip:

- passage of heavy ion (in Space, not at LHC)
- energetic recoiling nucleus or fragment
- At LHC possible nuclear reactions:
- <u>hadron-Si scattering at high energy (E>20 MeV)</u>
- low-energy (E< 20 MeV) neutron-Si scattering
- thermal neutron capture on boron $^{10}B(n,\alpha)^7$ Li

nuclear spallation reaction induced by protons/ neutrons.
cascade stage (top): fast secondaries emerge in the forward direction.
evaporation stage (middle): secondary protons, neutrons,

• evaporation stage (middle): secondary protons, neutrons, deuterons and alphas particles emerge isotropically.

• **recoil stage** (bottom): residual fragment of the target nucleus emerges with the momentum gained in the earlier stage.

SEE-OLOGY

NOTE: SEE rates are proportional to flux of particles with sufficient LET

the energy deposited per length unit due to non-ionizing interaction of the impinging particle with the nuclei of the lattice causing **displacement damage**. Interaction may be coulomb or nuclear (strong).

expression

 $\Delta E_{displacement} / \Delta x$ $\rightarrow NIEL = (dE/dx)_{displacement}$

Measurement units MeV/cm, also eV/μm or dividing by density MeV-cm²/mg

Non Ionising Energy Loss (NIEL)

physical quantities

units: NIEL(MeV-cm²/mg) = NIEL(keV-cm²/g) \times 10³

KERMA (keV) = NIEL(keV-cm²/g) × ϕ (cm⁻²) × mass(g)

KERMA (MeV) = NIEL(MeV-cm²/mg) × ϕ (cm⁻²) × mass(g) × 10³

physical quantities Displacement damage

- caused by: p, n, ions, electrons, γ-rays
- result of: transfer of non-ionizing energy (NIEL) to lattice **NUCLEI** causing structural damage to lattice (defects).
- basic mechanism: collision between incoming particle and a lattice nucleus (called Primary Knock-on Atom, i.e. PKA) displaces atom from original lattice position generating point defects (vacancies and interstitials).

• pejorative mechanism: energetic primary knock-on atoms generate other point defects or even highly damaged regions (cascades, clusters), depending on energy transferred during the primary collision.

hence the maximum transferable energy is

$$E_{f,2}^{max} = 4 E_{i,1} \times \frac{M_1 M_2}{(M_1 + M_2)^2} \quad \text{(non-relativistic)}$$
minimum energy
for displacement
$$E_{inc}^{min} = E_{threshold} \times \frac{(M_{incident} + M_{target})^2}{4 M_{incident} M_{target}} \quad \text{(non-relativistic)}$$

elastic collisions 2

minimum energy
for displacement
$$E_{inc}^{min} = E_{threshold} \times \frac{(M_{incident} + M_{target})^2}{4 M_{incident} M_{target}}$$
 (non-relativistic)

Displacement damage threshold energies				
diamond	germanium	silicon	GaAs	
35±5 eV	27.5 eV	25 eV	7-11 eV	

in Silicon

incident particle	E _{min} (eV) for creation	
	Frenkel pair	
Silicon ion	25 (billiard ball effect)	
neutron/proton	186	
electron	319 (non-relativistic formula above)	
	255 (correct relativistic)	

elastic collisions 3

physical quantities

neutrons in Silicon

incident energy	E _{max recoil}	comments assuming max energy recoiling Silicon
35 keV	4.7 keV	range of recoil ~ 200 Å, most of energy loss of Si recoil is nuclear
1 MeV	134 keV	range of recoil ~ 6000 Å, ~ 50% of energy loss of Si recoil is nuclear → 2700 displacements ~ 60% recombine within 100 ps → leaving 1000 displacements followed by further long term annealing

NOTE: max E_{recoil} from Co-60 is 150 eV (isolated displacements, no clusters)

The quantity NIEL is often given in terms of the Displace Damage cross-section D

(also called damage function, or displacement kerma function)

KERMA = D × the incident fluence × number of irradiated silicon atoms

remembering definition of a barn = 10⁻²⁴ cm²

KERMA(MeV) = D(MeV-mb) × ϕ (cm⁻²) × (# Si atoms) × (10⁻²⁷ cm²/mb)

WARNING: sometimes D is called NIEL.

conversion factor D to NIEL:

100 MeV-mb =

= 100 MeV-mb × (10³ keV/MeV) × (10⁻²⁷ cm²/mb) × (mole Silicon/28.086 g) × (6.022 × 10²³/mole) =

= 2.144 keV-cm²/g

NIEL scaling hypothesis 1

Observation: degradation of silicon devices (detectors) is roughly proportional to amount of displacement damage measured in terms of the kinetic energy imparted to the silicon atoms.

Hypothesis: displacement damage is due to non-ionising energy transfers to lattice and can be expressed in terms of that caused by a certain flux of mono-energetic neutrons.

Unfortunately the displacement damage by neutrons has a strong energy dependence.

physical quantities

Neutron displacement damage as a function of energy, from E 722-94 (1998 Annual Book of ASTM Standards) NIEL-hypothesis: "A particle fluence ϕ can be reduced to an equivalent 1 MeV neutron fluence ϕ_{eq} to produce the nearly the same bulk damage."

In silicon the reference values are: D(1 MeV neutrons) = 95 MeV-mb NIEL(1 MeV neutrons) = 2.037 keV-cm²/g

> chosen as STANDARD reference values when calculating the <u>equivalent 1 MeV neutron fluence</u> values for irradiations using neutrons of another energy, or other particle types (electrons, protons, pions, ions...)

particle	total dose [rad(Si)]	φ fluence (part/cm²)	φ _{eq} equivalent neutron fluence (n/cm2)	hardness factor k = ∳ _{eq} /∳
electrons (100 MeV)	100k	3.3 × 10 ¹²	3.8 × 10 ¹¹	0.12
electrons (2 MeV)	100k	4.1 × 10 ¹²	8.6 × 10 ¹⁰	0.02
protons (50 MeV)	100k	6.2 × 10 ¹¹	1.4 × 10 ¹²	2.26

physical quantities NIEL scaling based hardness factor

The damage parameters induced by different particles scale with NIEL (!?)

Accordingly the **generic damage parameter** α should scale with the **hardness factor K**:

 $\alpha(X)$ and $\alpha(Y)$ are the generic damage parameters of radiation X and Y, and

K(X) and K(X) are the hardness factors of radiation X and Y, respectively.

energy deposit variables: LET, TID, DDD

energy deposit	quality of measurable effect	due to	variable
strong ionisation	highly structured tracks, Single Event Effects, Stochastic	heavy particles (primary and secondary): slow protons, α, ions, nuclear fragments	Linear Energy Transfer (LET) of single ion
slight ionisation	less structured tracks → uniform; effect by accumulation of charges; predictable	electrons (primary and from from photons), muons, m.i.p.	integrated total ionising dose (TID)
non-ionising energy loss	effect by accumulation of displacement damage (<i>lattice disorder</i>); uniform (clusters); predictable	neutrons, VERY slow ions (end of range)	integrated displacement damage dose (DDD)

cross-section: a basic concept

- a useful and pervasive concept in radiation (examples from HEP, SEE)
- dimensions of an area (cm²)
- reflects probability of occurrence of a certain type of event
- total area exposed to radiation provides normalization

mean free path = average distance travelled by a particle without interacting

$$\lambda = \frac{1}{n_s \sigma}$$

n_s (cm⁻³): number density of scattering centers

cross section "effective cross section" of scattering

total number of particles removed from beam $n = \int dn = N_s \Phi \int \chi(\Omega) d\Omega = N_s \Phi \sigma$

"effective cross-section of the scattering"

Rationale:

• area of each scattering center = σ

• total area of scatterers = $N_s \sigma$

cross section

cross sections: another way to put it

inclined SEE exposure

cross-section: SEE

total interaction rate: $R_{int} = L \cdot \sigma_{tot}$ interaction rate of type k: $R_k = L \cdot \sigma_k$ 1 barn = 10⁻²⁴ cm² = 10⁻¹² cm on a side

1 inverse picobarn = 1 $pb^{-1} = (10^{-36} cm^2)^{-1} = 10^{36} cm^{-2} = 10^{-3} fb^{-1}$

LHC luminosity $L(t) = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} = 10^{-2} \text{ pb}^{-1} \text{ s}^{-1}$

time integrated luminosity in 10 LHC physics years $L = \int L(t) dt = 5 \times 10^{41} cm^{-2} = 5 \times 10^{5} pb^{-1} = 5 \times 10^{2} fb^{-1}$

 $\sigma_{\text{inelastic}}$ = 80 mb = 8 × 10⁻²⁶ cm²

 $\begin{array}{l} \text{Rate of inelastic events} \\ \text{N}_{\text{elastic}}(t) = \text{L}(t) \cdot \sigma_{\text{inelastic}} = 8 \times 10^8 \, \text{events/s} \\ \text{after 10 years } \text{N}_{\text{elastic}} = 4 \times 10^{16} \, \text{events} \end{array}$

Consider a RARE process with $\sigma_{rare} = 10^{-38} \text{ cm}^2 = 10 \text{ fb}$ After 10 years N = L • σ = 500 fb⁻¹ × 10 fb = 5000 events

Extremely hostile radiation environment!!!

cross-sections: CMS/LHC

HE-Physicists are after RARE hard-to-find events

Н

≈ 23 overlapping minimum bias events / BC≈ 1900 charged + 1600 neutral particles / BC

Radiation levels @ LHC

Instantaneous effects (due to presence of beam):

• **detector occupancy** (pattern recognition, detector saturation and pileup, trigger rates)

• **Single Event Effects** (data corruption, loss of control or timing): neutrons E>2 MeV, charged hadrons E>20 MeV, In Space galactic HZE

Cumulative effects due to long exposure to radiation:

- **bulk (displacement) damage** to Silicon-detectors: neutrons > 20 keV, charged hadrons
- surface (lonization) damage to electronics (degrade of S/N,...)
- Light loss in scintillators/fibers
- activation of detectors and materials (problems for maintenance)
- damage to materials (insulators)

Radiation levels @ CMS

Superconducting Solenoid lowest/highest levels Silicon Tracker integrated over 10 years: Very-forward Pixel Detector Calorimeter **Total Ionization Doses** Preshower - 5 Gy (Cavern) 8 MGy (Pixels) **Displacement Damage fluences** ٠ 2×10¹⁰ equivalent 1 MeV neutrons/cm² (Cavern) - 2.5×10¹⁵ equivalent 1 MeV neutrons/cm² (Pixels) SEE fluences ٠ Hadronic Calorimeter 2×10⁹ hadrons/cm² (Cavern) Electromagnetic Muon Calorimeter 3×10¹³ hadrons/cm^{/2} (Pixels) Detectors for E_{hadrons} > 20 MeV **Compact Muon Solenoid**

Obtained from simulation tools (Fluka, ...)

- uncertainties due to: physics models; detector model, ...
- uncertainties with electronics (COTS, dose rate effects, ...)

→ Safety Factors

Microstrip detectors and APV25 chips: 25 cm<R<110 cm => 10^{13} cm⁻² < Φ < 10^{14} cm⁻²

Space radiation environment 1

Space is full of energetic particles with damaging potential (TID,DDD,SEE):

- from the SUN: normal solar wind and solar events (storms, flares)
- from outside the solar system (galactic cosmic rays)

 Some are deflected when their magnetic rigidity is small enough, others are magnetically trapped in Van Allen belts.

Space radiation environment 2

Radiation belts (Van Allen): depends on Solar activity

	protons	keV ÷ 500 MeV
	electrons	eV ÷ 10 MeV

Solar wind and flares: depends on Solar activity

10 Aug 1990 Bhite Light	protons	keV ÷ 500 MeV
10.06 121.15 Kanao Kentara Reverse Figh Althode Observatory/Solar Maximum Kanao Archives 200 4-213	ions	1 ÷ few 10 MeV/n

Galatic Cosmic Rays (GCR, HZE): ~ constant background

Protons and	Flux maximum at
ions (high charge Z	~ 300 MeV/n
and energy E)	

Space radiation environment 3

- Solar particle events: give rise to solar cosmic rays
- Solar activity: 11-year cycle:

7 years of high activity (solar maximum)

4 years of low activity (solar minimum)

• composition: mostly protons, α , heavy nuclei

• *Flares*: at Earth surface fluxes up to 10⁶ p/(cm²s) [1972], spectra highly variable

- Galactic Cosmic Rays: diffuse galactic background
- composition: ~85% protons, ~14% α, ~1% heavy nuclei (HZE)
- most up to 10 GeV/amu. But some up to up to 10²⁰ eV (10¹¹ GeV) = 16 joules!

• anti-correlated with solar activity: solar flux scatters incoming charged particles

High Charge and Energy (HZE) cosmic-ray tracks in nuclear emulsion

Energy spectra of primary cosmic rays

trapped particles (extra slide)

- Passing charged particles interact with Earth magnetic dipole field
- Some particles are trapped in Van Allen belts
- At poles particle may **bounce** (magnetic mirroring), and drift around the Earth depending on their charge
- Particles are trapped if the mirror point is high enough

trapped particles

• The Earth's dipole is slightly off-axis (320 km from the planet axis) and inclined at 11.5°

In some points the magnetic field intensity is smaller

 Lowest magnetic intensities are above Brazil, where there is the so called South Atlantic Anomaly (SAA)

detector systems for space missions

• An "astrophyscis detector" on board a spacecraft is also composed of a number of dedicated detectors and elements, each subsystem subject to fail from radiation in a higher or lesser degree.

space detectors

Each spacecraft is exposed to different levels of radiation depending on the <u>type of mission</u> (type of orbit, where, how long,...)

Simulating the radiation environment

- CREME96 (models cosmic-ray environment and effects) . The standard model for cosmic ray environment assessment, and standard tool to investigate radiation induced effects.
- Provides comprehensive set of cosmic ray and flare ion energy spectra
- Includes treatment of geomagnetic shielding and material shielding
- Worst case scenarios: worst day, worst week, peak 5 minutes, solar maximum, solar minimum
- PURPOSE: Calculate electron/proton/ion fluxes, and energy released in device
- \Rightarrow failure rates of device can be estimated

LET spectra and dose for GLAST

GLAST orbital parameters:

565 km asl, circular orbit

28.5° inclination, ~1.6 hr orbital period

5 year mission

Courtesy of Riccardo Rando, GLAST collabortion

CREME96 simulation RESULTS 100 mil (2.5 mm)AI:

Comparison HEP (CMS@LHC) with Space Environment

PART 2

overview of radiation issues and assurance of electronics

for

Accelerator based facilities (HEP experiments, Radiation

Therapy, in some cases even in Industry);

- **Space missions** (Astrophysics experiments, solar system exploration, Telecomunications satellites);
- High Altitude Flight (avionics)
- Nuclear Plants
- Ground level critical/vital electronics (e.g. pace-makers,...)

must

consider elements that may fail from radiation

(to higher/lesser degree)

- detectors (gas, silicon,...)
- front-end electronics, CMOS, bipolar circuits, μ -processors
- LEDs, laser diodes
- Optocouplers, fibre-optic data links
- Semiconductor sensors (Si, GaAs, solar cells, ...)
- Infrared, x- and gamma-ray detectors
- Insulators, cabling
- Optical materials
- Cryogenics
- ...
- human beings (Radio-Biology: astronauts, airplane crew, passengers, patients, personnel, scientists,students)

In general radiation damage of electronics <u>depends on technology used</u>

Depending on particle type and energy, in a given detector or system, macroscopic effects of radiation can be classified into THREE MAIN GROUPS:

cumulative effects

- TID (surface damage)
- DDD (NIEL, bulk damage)
- transient effects
 - SEE

TID,DDD,SEE

Summary (from part 1) radiation effects

micro-effect			macro-effect
<u>Small</u> ∆E _{ionization} deposited uniformily and delivered over a long time.	charged particles	Direct or secondary ionization	Total Integrated Ionizing Dose (TID) Effects
Sudden large ∆E _{ionization} deposited in the ' <i>wrong place at the wrong time'.</i>	heavy charged particles (protons, ions)	Direct ionization	Single Event Effects
Accumulation of small ∆E transfers to atomic nuclei (Coulomb, nuclear interactions).	protons, neutrons, high energy electrons	displacement damage of lattice	bulk effects; enhancement of TID Effects
Sudden high ∆E transfer to a single nucleus at the 'wrong place and time'.	Energetic heavy particles (protons, neutrons, energetic ions)	Secondary ionization by recoil atoms and nuclear fragments	Single Event Effects

time domain of effects: cumulative versus transient

cumulative effects:

effects that change with continuity (gradually) with increased exposure to radiation. Damage can be monitored until deterioration goes too far. Predictable.

• tell tale concepts and words: small energy transfers, accumulation of effects, gradual parameter shifts (thresholds, leakage currents, type inversion,...)

transient, single event effects:

effects that occur stochastically (suddenly). Not predictable on event to event basis.

• *tell tale concepts and words*: signal; sudden, large or high energy deposits; out of the blue, catastrophic event; redundancy (backup); sooner or later; evaluation of risk; should have known better; bad luck, voodoo...

TID, NIEL, SEE

- **1.** Total Ionization Dose (TID), for electronics also called surface damage:
 - Effects caused by long term exposure to *ionizing radiation*.
 - Induces changes in the mechanical and electrical properties of materials that may cause them to operate incorrectly or even fail.
 - An important effect for <u>insulators</u> (charge build-up), cabling, electronics (surface charge effects), optical elements (lenses, filters) and cryogenics.
- 2. Displacement Damage Dose (DDD) also called NIEL:
 - Effects due to long term exposure to interactions with <u>non-ionizing energy</u> <u>transfers</u>.
 - Originates displacement defects in semiconductor materials (introduction of deep band-gap levels, traps,...)
 - Important effect in all semiconductor <u>bulk-based devices.</u>

3. Single Event Effects (SEE):

- Effect due to a single interaction, wherein a <u>large ionization</u> gives a temporary or permanent damage to many <u>electronically live devices or systems</u>.
- Important effect for digital circuits such as memories or microprocessors.
- Induces errors, undesired latch-ups and may lead to system failure.

TID, Ionization Damage

• Cumulative damage as in insulators wherein electrons and holes produced by ionization are fixed and charged regions are induced; i.e. material does not return to its initial state.

In context of silicon devices (wherein there are oxide layers and Si-SiO₂ interfaces) also called <u>surface damage</u>.

- due to energy deposition in form of ionization:
 - electrons

TID

- gamma and X-rays (\Rightarrow electrons via photoelectric, Compton and pair-production)
- pions, protons, ions
- damages all types of semiconductor electronics (CMOS and bipolar)
 - Threshold Shifts (transistors)
 - Leakage Current
 - Timing Changes
 - Startup Transient Current
 - Functional Failures

physical quantities of interest:

- Linear Energy Transfer LET (MeV-cm²/mg)
- Total Ionizing Dose (TID) 100 rad = 1 Gray
- for protons and ions: TID = LET \times Fluence

- effects scale with total dose
- tolerance of devices expressed in TID (Gray or Rad; 1 Gy = 100 rd = 1 J/kg)
- modern CMOS COTS usually can withstand 10-20 krad (good for low(*) orbits)
- shielding may *partially* mitigate
 - Low energy protons
 - Electrons

(*) below Van Allen

steps to long term effects in <u>electronics</u>: surface damage

Several step process:

- a) Ionization produced along track of ionizing particle; i.e. creation of electrons and holes with a certain distribution. (Note: if produced in great quantities (e.g. highly ionizing ions, nuclear fragments,...) there is risk of SEE).
- b) Initially many electron-hole pairs recombine before moving too much. Recombination takes place between electrons and holes produced in the same and in different events.
- c) Surviving electrons diffuse or drift away. Some electrons end up on traps, others escape from the dielectric.
- d) Carriers trapped on levels with low ionization energies get thermally re-excited into the conduction or valence band and, subject to further drift or diffusion, escape the dielectric or are captured on deep trap levels (production of permanently trapped charges).
- e) In addition, in the energy gap new oxide-silicon interface levels are induced and occupied by electrons or holes (depending on position of Fermi level at the interface).
- f) NET EFFECT: induced charges in the oxide changes the electric field in the semiconductor, in the region of the interface.

steps to long term effects in electronics: displacement damage

four step process:

DDD

- Primary particle <u>hits</u> atom in lattice, transferring enough energy to displace it. Creation of interstitials and vacancies (Frenkel defects). For high energy primaries, nuclear reactions can occur and produce several fragments.
- 2) The recoil atom or its fragments (secondaries) migrate through lattice causing further displacements. The *mean free path* between successive collisions decreases towards end of the range, so that defects are produced close and interact (general; i.e. true for primary and secondaries, tertiariares...).
- 3) Thermally activated motion causes rearrangement of the lattice defects. Annealing at room temperature. Some rearrangements are influenced by presence of impurities in initial material.
- 4) Thermally stable defects influence the semiconductor properties; e.g. increase of capture, generation and recombination rates of non-equilibrium charge carriers.

NET Effects of displacements in detectors (reverse biased pn-junctions) cause:

- a) changes of the internal electric field, due to modified doping concentrations,
- b) eventually leading to inverting the conduction type for very high irradiations;
- c) increase of the leakage current;
- d) changes in capacitance and resistivity;
- e) <u>charge collection losses</u>.

DDD

NIEL, Displacement Damage (DD)

- Cumulative <u>bulk damage</u>; e.g. a less ordered lattice produces long term effects on semiconductor properties
- due to energy deposition in non-ionizing interactions:
 - neutrons
 - protons, ions (especially slow ones near end of range)
 - energetic electrons
- effects in electronics:
 - Production of defects which results in progressive device degradation
 - May be similar to TID effects
- sensitive devices (NOTE: CMOS, not bulk sensitive, is practically unaffected)
 - silicon detectors
 - laser diodes, LED, opto-couplers
 - solar cells
 - CCDs
 - linear bipolar devices

physical quantities of interest:

- particle fluence $\Phi(\#/cm^2)$
- Non-Ionizing Energy Loss (NIEL) (keV-cm²/g)
- DD Dose = NIEL $\times\,\Phi$
- effects scale with particle fluence
- tolerance of devices expressed in fluence of 1-MeV neutron equivalents
- risk begins at fluence > 10¹¹⁻¹² 1-MeV neutrons/cm²
- shielding has some effect:
 - -depends on location of device
 - -may reduce significant electron and some proton damage

Single Event Effects (SEE)

- single ionizing particle deposits enough ionization in a sensitive volume to cause <u>spontaneous damage</u> in live device. Note: it requires a minimum amount of ionization!
- due to:
 - heavy ions (e.g. primary galactic high charge and energy cosmic rays)
 - neutrons
 - protons, pions \rangle \Rightarrow slow highly ionizing recoil nucleus, nuclear fragments
- effects in live electronics depend greatly on technology and design:
 - permanent HARD SEE (may be destructive)
 - SEL (CMOS, CPUs, PLC,...
 - SEB (MOSFETs, power devices,...)
 - SEGR (power MOSFETS)
 - ...
 - static SOFT SEE (data corruption)
 - SEU (RAM, PLC,...)
 - SEFI
 - transient SEE (spurious signal)
 - combinatorial logic
 - operational amplifiers
- rate of effects scale with particle flux
- tolerance of devices expressed in cross-section(cm²) = N_{SEE}/fluence
- depends on specific ionization power of culprit LET > LET_{threshold}
- in hadron environment SEE rates proportional to hadron flux E > 20 MeV E_{neutrons} > 2 MeV

physical quantities of interest:

- particle fluence $\Phi(\#/cm^2)$
- Linear Energy Transfer (LET) (keV-cm²/g)
- cross-section $\sigma(\text{cm}^2)$ = N_{\text{SEE}}/ Φ
- σ versus LET (threshold and plateau values)

The cross section (σ) for Single Event Effects is $\sigma = N_{SEE} / \Phi$ N_{SEE} : number (counts) of SEE observed Φ : uniform fluence over some fiducial area

• practical flux set by dead-time of DUT (typical few 10÷10⁴ ions cm⁻²s⁻¹)

- Statistical Error improves with Fluence
- however Fluence Limited by Total Dose

(*) In silicon a LET of 97 MeV-cm²/mg corresponds to charge deposition per unit path length of 1pC/μm. NOTE factor ~100: it is handy for conversion.

SEE effects in Application Specific-ICs at SIRAD (LNL)

SEE

Solid line is a multiple Weibull fit based on simulations, but direct microscopic evidence would be more compelling.

nuclear microprobe VS IEEM

Resolution on target determined by beam optics: spot size and positioning. Difficult to micro-focus heavy energetic ions; e.g. rigidity of a 300 MeV Au⁺²⁵ ion is 1.40 T-m, 1.7 times more than 95 MeV C⁺⁶ ion.

SEE

Resolution on target: lateral size of field of view divided by linear line pair resolution of sensor.

analysis: SEE mapping, Ion Beam Induced Charge Collection, Time Resolved IBICC,...

Space Radiation and effects on electronics

TID,NIEL,SEE

paradigm also adopted in SPACE RADIOBIOLOGY

adapted from P.Todd: Space Radiation Health: a brief primer Gravitational and Space Biology Bulletin 16(2) June 2003

PROTON

tissue cells

SOLAR OR TRAPPED

GALACTIC HZE PARTICLE (Fe)

Space Radiation SOURCES:

- predictable: trapped protons and electrons, galactic cosmic rays
- stochastic (unpredictable): protons from solar event (storm, flare)

Biological RESPONSES (effects):

- predictable effects (continuous Dose→Response curves): blood, immune system
- stochastic effects (unpredictable Single Event Effects): cancer

	cancer	immune	neurological
trapped	dose predictable	dose predictable	dose predictable
particles	effect stochastic	effect negligible	effect negligible
solar storm	dose stochastic	dose stochastic	dose stochastic
protons	effect stochastic	effect predictable	effect negligible
galactic	dose predictable	dose predictable	dose predictable
cosmic rays	effect stochastic	effect negligible	effect predictable
Particle Radiation Effects in Scientific Equipment

Particle radiation **Ionizing &** Single material Charging **Non-Ionizing Event** degradation Effects Dose **Degradation of:** Data Biasing of **Degradation of:** • µ-electronics corruption instrument • thermal, readings Noisy electrical, optical silicon sensors Images Pulsing properties System • Power solar cells structural shutdowns drains integrity optical •Circuit • Physical components damage damage

direct effects in electronics

Space Environment Effects more complete picture

Radiation Effects

in perspective

CERN Training Radiation effects on electronic components and systems for LHC

Radiation effects on devices : Total Ionizing Dose, displacement effect, single event effect

J. Gasiot

«Electronique et Rayonnement» Université de Montpellier II, FRANCE

Spacecraft design team

A typical spacecraft design team: the radiation group is only one part of the team.

dealing with

In approaching radiation effects

- 1. need a CLUE
- 2. tell people (engineers) what to do
- 3. when ready, perform experiment

empirical approach

dealing with

COTS approach to deal with radiation effects

define, identify, test

Simulate radiation environment and effects

 to evaluate the risk of failure due to radiation in a given HEP detector, space detector,...

need description of the radiation environment: i.e.

- Make models based on experimental data and Monte Carlo simulations to calculate expected doses, particle types and fluences
- Take results of simulation into account when designing radiation tolerant/hard elements and systems for detectors
- Allow for worse case scenarios to account for unpredictable events (worst known solar storms and hope for less severe ones,...)
- Allow for safety margins

CONCLUSIONS: studying radiation effects NEED TO define

quality of radiation
flux/fluence (how many!); i.e. cross-sections
source predictable or stochastic

- properties of target

 material (silicon, plastic, water...)
 active devices (memories, diodes,..., *living cells*)
 active volumes (different sensitivities, how many, where, ...)

• are there predictable or stochastic effects?

what is correct variable? (dose, fluence, 1-MeV equivalent neutron fluence for NIEL; LET and fluence hadrons E > 20 MeV for SEE)

 any normalisation factors? (scaling, NIEL-hypothesis, quality factors, radiobiological equivalents)

any role of microenvironment? (parasite structures such as latch-up in CMOS; bystander effect)

• any relaxation effects? (annealing, adaptive response)

- are there dose rate/flux effects?
 - are there low dose effects?

extra slides

radiation

expanding EM kink

relativistic treatment

radiation

bremsstrahlung (radiation)

• for two particles in the same medium, the lighter particle emits a greater amount of bremsstrahlung (other things being equal)

electrons (positrons) are *lightest charged particles* and mr it is <u>easiest to make them shake off photons</u>

 $m_{muon} \approx 200 m_e$ $m_{proton} \approx 1840 m_e$ $m_{proton} \approx 4(1840) m_e$

• more bremsstrahlung is emitted if a particle travels in a dense medium with a dense high atomic number Z_{targ} than in one with a low atomic number

physical quantities

dose depth distribution electrons (typical low energy LINACs) and gamma (C0⁶⁰) in water

dose depth distribution 1.80 1.60 1.40- 10 MeV 1.20 relative dose ---- 5 MeV 1.000.80--- 2.5 MeV 0.60 Gamma 0.400.200.00 2.004.000.00 6.00 8,00 10.00penetration in cm at density 1