

Scuola Nazionale SIRAD Legnaro, 6/4/2005

EFFETTI DA EVENTO SINGOLO (SEE): UN'INTRODUZIONE

Alessandro Paccagnella paccag@dei.unipd.it

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE – Universitá di Padova via Gradenigo 6B, 35131 Padova, ITALY

OUTLINE

- Introduction
- Charge generation by an ionizing particle in Si and SiO₂
 - LET
 - Collection mechanisms
 - Recombination
 - Simulations
- Single Event Effects
 - Sources
 - Classification
 - Cross section
- Conclusions

News reports

- Single Event Effect (SEE): perturbation of the behavior of electronic (optoelectronic) devices, circuits and/or systems produced by a single ionizing particle
- "SRAM soft errors cause hard network problems" Anthony Cataldo 08/17/2001
- "Soft errors a problem as SRAM geometries shrink" Jeanne Graham 01/28/2002
- *"Strategy for reducing soft errors is needed"* Mark-Eric Jones, 8/27/ 2002

Early warning of SEE's at sea level

J.T. Wallmark and S.M. Marcus, Proc IRE, 1962

Alessandro PACCAGNELLA

Charge generation

- An ionizing particle generates a (dense) track of electronhole pairs in semiconductors (Silicon) and dielectrics (SiO₂)
- The number of generated carriers is proportional to the particle Linear Energy Transfer (LET) coefficient (MeVcm²/mg), i.e., the energy loss/unit path length (Energy / e-h pair: 3.6 eV in Si, 17 eV in SiQ₂)

Alessandro PACCAGNELLA

Charge generation and collection

- Under an external electric field the two columns of carriers recombine and drift: many electrons and holes survive in Si, fewer in SiO₂
- Eventually, a net negative/positive charge can be collected at sensitive nodes

Charge collection in a reverse biased p-n junction

Alessandro PACCAGNELLA

Time evolution of charge collection

T. Oldham, NSREC Short Course, 2003

Alessandro PACCAGNELLA

April 6, 2005

charge diffusion

Charge funneling mechanism

F.B. McLean and T.R. Oldham, IEEE-TNS29, 1982

Alessandro PACCAGNELLA

9/32

Charge collection across circuits

 "Traditional" view of charge collection in Si circuits fabricated with relaxed CMOS technologies

• Only particles at low impact angles may affect different devices, if diffusion charge collection is excluded

T. Oldham, NSREC Short Course, 2003

Alessandro PACCAGNELLA

10/32

Calculated e-h track structure in Si

P. Dodd, et al., IEEE-TNS45, 1998

Alessandro PACCAGNELLA

11/32

Moore's Law

Moore's law is (self-)validated by reducing the device dimension over the years, by scaling down the minimum feature size of the CMOS technology node

Alessandro PACCAGNELLA

12/32

Simulated heavy ion e-h track in Si

Fe ions 275 MeV LET=24 MeVcm²/mg LET metrics in Si: 1 MeVcm²/mg $6.4\cdot10^4$ e-h pairs/µm 10 fC/µm

Electron-Hole density (cm⁻³)

P. Foulliat, EWRHE 2004

Alessandro PACCAGNELLA

13/32

Heavy ion e-h track in Si vs. CMOS minimum size

lon e-h tracks in SiO₂

- Column radius smaller than in Si because of carrier energy loss due to optical phonons
- Gaussian distribution with b=3.5 nm usually assumed
- Fewer e-h pairs than in Si because of greater pair production energy (17 eV vs. 3.6 eV)
- Much greater recombination than in Si
- Detailed track structure calculations (similar to those presented for Si) not yet available
- Models available in literature developed in thick (>20 nm) oxides, not updated to current MOS gate oxides that are few nm's thick: for instance, t_{ox}=2.3 nm for the 0.13 µm CMOS technological node

Recombination models in SiO₂

Alessandro PACCAGNELLA

16/32

LET in SiO₂ and recombination mechanisms

Columnar recombination: a classical problem

$$\frac{\partial n \pm}{\partial t} = D_{\pm} \nabla^2 n_{\pm} \mp \mu_{\pm} E \sin \phi \frac{\partial n \pm}{\partial x} - \alpha n_{\pm} n_{\pm} (1)$$

$$n(\vec{r}, o) = \frac{No}{\pi b^2} e^{-r^2/b^2}$$
(2)
$$Y = \left[1 + \sqrt{\frac{\pi}{2}} \frac{No e}{4\pi \epsilon \epsilon_0 b E \sin \phi}\right]^{-1}$$
(3)

G. Jaffe, Ann. Phys., 1913

Alessandro PACCAGNELLA

18/32

Calculated yield in thick oxides

Charge transport in SiO₂

- In thick oxides (>20 nm), after the first generationrecombination phase the surviving electrons are rapidly swept out by an external electric field
- The remaining holes moves slowly in SiO₂ via hopping transport (*dispersive transport*) under the effect of an external electric field, eventually reaching the cathodic interface with Si where they can be trapped at local defects
- In thin gate oxides (few nm's) both electrons and holes may rapidly escape from the oxide in short time (ps)
- Charge transport in gate/field oxides is usually considered to be not effective in promoting SEE's, but things may change in CMOS technologies with thin dielectrics...

Myth of the average event

•Simulation of Single Event Effects may start from the analysis of the impact of a single particle on a single device, i.e., a MOSFET

•Deviating behaviors may occur ("Myth of the average event")!

Average: Track with apparent radial structure, $\Delta E \approx 1 \text{ keV}$

Single event: Proton + δ -ray $\Delta E = 7.8 \text{ keV}$

Simulation of a MOSFET response

Alessandro PACCAGNELLA

22/32

Current interests in SEE's

- Single event effects (SEE) on electronic devices are produced by a single ionizing particle, such as alpha's from radioactive decay or cosmic rays
- Historically, this problem has been faced by institutions coping with radiation harsh environments:

Space/defense/high energy physics/nuclear power/... (NASA, ESA, Sandia, CERN, Fermilab, CEA,...)

Avionic (Boeing, Lockheed, ...)

- More recently the SEE issue has been seriously investigated for its reliability implications even at sea level in everyday life by:
 - Semiconductor *companies*: IBM (since'80s), Intel,
 - STMicroelectronics, TI, Infineon,...

- Semiconductor IC *customers*: less prone to show their interest

Sources of Single Event Effects

- Space applications:
 - High-energy heavy ions
 - Long range in Si, large LET, direct interaction
 - High-energy protons (trapped, solar, cosmic)
 - Direct / Indirect interaction through nuclear reactions
- Terrestrial and avionic applications:
 - High energy neutrons (cosmic ray byproducts)
 - Indirect interaction through nuclear reactions
 - Low energy neutrons (thermal)
 - Indirect interaction via ¹⁰B nuclear reaction
 - Alpha particles from radioactive decay of contaminants in the chip/package/solder
 - Short range in Si, small LET, direct interaction

Single Event Effects even at sea level

- High energy neutrons
- Low energy neutrons

Alessandro PACCAGNELLA

25/32

Alpha particle emission rates

Material	Emission rate (α /cm ² -hr)
Bare Si	0.00020
Plastic (epoxy)	0.00080
Ceramic lid A	0.15
Ceramic lid B	3.10
Ceramic DIP A	0.02320
Ceramic Dip B	0.03230
Ceramic Dip C	0.02610
Plastic DIP A	0.00109
Plastic DIP B	0.00124

L. Lantz, IEEE-TR45, 1996

Alessandro PACCAGNELLA

26/32

Critical charge and threshold LET

- The ionizing particle generates electron-hole pairs along its track, producing in turn a transient current pulse in the circuit at random (unpredictable) instants
- If the charge collected by a sensitive node of the device/circuit is larger than the **critical charge** required to start an anomalous behavior, an *effect* may be seen affecting the electrical performance of the device/circuit:
 - Soft errors
 - Hard (destructive) errors
- The critical charge corresponds to a particular LET value, that is over a minimum **threshold LET** value required to start the SEE (but the **incidence angle** of the particle plays a fundamental role!)
- The severity of the effect on the device/circuit depends on:
 - pulse/charge intensity
 - type of effect
 - system criticality

Classification of SEE's

- Non-destructive (soft errors):
 - Single Event Transient (SET)
 - Single Event Upset (SEU)
 - Single Bit Upset (SBU)
 - Multiple Bit Upset (MBU)
 - Single Event Functional Interruption (SEFI)
 - Single Event Latchup (SEL or SELU)... may be also destructive
- Destructive (hard errors):
 - Single Event Burnout (SEB)
 - Single Event Gate Rupture (SEGR)
 - Stuck Bits

Destructive event in a COTS 120V DC-DC Converter

K. LaBel, EWRHE 2004

Alessandro PACCAGNELLA

28/32

Single Event Effects in devices/circuits can be **mitigated** by using different strategies at different levels. For instance:

- circuit level, by using specific technologies or processes for fabrication (such as epi-CMOS, SOI, additional capacitors in SRAM, or rad-hardened electronic components)
- design level, by using ad hoc logic structures aiming to SEE immunity (such as SEE immune latches)
- system level, by modifying the software and/or the hardware (such as triple redundancy)

SEE ground testing

- Accelerated tests are performed to evaluate the expected error / failure rate (FIT = 1 error / 10⁹ hours) of the device/system in the specific operating environment (Space, HEP, Avionic, ...) by using:
 - Ion beams from accelerators
 - Neutron beams
 - Alpha sources
 - Laser testing
- The SEE sensitivity of each SEE type (SEU, SEL, SEB, ...) in any particular device is evaluated by measuring the corresponding cross section vs LET:
 - Cross section : $\sigma(LET) = \#$ Events / particle fluence (cm²)
- The error rates in operating condition is derived from cross sections and the features (nature of particles, corresponding fluxes, mission duration) of the actual environment
- Error rate = # errors / device day

SEE cross section

- LET_{th} is the minimum (threshold)
 LET to cause the specific SEE
- The saturation cross section σ_{sat} is approached at high LET values
- The o(LET) curve is obtained by measuring the cross section at a few LET values and fitting data with a Weibull curve

LET_{th}

Device Threshold	Environment to be Assessed
LETth < 10 MeV*cm2/mg	Cosmic Ray, Trapped Protons, Solar Flare
LETth = 10-100 MeV*cm2/mg	Cosmic Ray
LETth > 100 MeV*cm2/mg	No analysis required

R. Velazco, EWRHE 2004

April 6, 2005

Alessandro PACCAGNELLA

Conclusions

- Single event effects are produced by collecting the charge generated (usually in the semiconductor) by a single ionizing particle: charge > critical charge
- The e-h track may include more than one active device (e.g., MOSFET)
- Different SEE's may occur depending on the device type, being either soft or hard in nature
- Each SEE for a specific device is characterized by its cross section and threshold LET
- SEE's are expected not only in radiation harsh environments but also at sea level
- ...more SEE fun to come in the next lecture!

