

### Scuola Nazionale SIRAD Legnaro, 6/4/2005



## **SEE IN SRAM**

Alessandro Paccagnella paccag@dei.unipd.it



DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE – Universitá di Padova via Gradenigo 6B, 35131 Padova, ITALY

### OUTLINE

- Introduction
- The SRAM cells: 6T and 4T
- Single Event impact on CMOS inverter and SRAM cell: flipping the bit
- SRAM SEU:
  - mapping
  - cross section
  - critical charge
- Scaling issues in SRAM SEU
- Conclusions



### Introduction

### Why SEE's on SRAM's?

- The Static Random Access Memory (SRAM) is a benchmark to evaluate the SEE sensitivity of CMOS technologies
- SRAM is the easiest latch to be fabricated in standard CMOS technology (DRAM or FLASH need dedicated process steps)
- SRAM's are widely used in all logic circuits
- SRAM cell size scales with Moore's law
- SRAM cells can be simulated in detail
- Memories are easier to test than logic (such as DSP)
- SEE measurements are straightforward even on commercial parts



## Early reports of SEE's in memories

- SEE's in memories typically refer to the loss of information from a memory cell caused by a single ionizing particle: Single Event Upset (SEU)
- In a Flip-Flop (Latch) the information corruption is associated to the bit flip: 0 → 1 or 1 → 0
- Memory arrays are organized in words and more than one SEU may affect a single word:
  - Single Bit Upset (SBU)
  - Multiple Bit Upset (MBU)
- Soft Error Rate (SER)
- First report on memories: a bipolar flip-flop circuit (Binder et al., 1975) affected by cosmic rays in satellites



### SEU in early DRAMs: no effect on "0"

The DRAM case: SEU's observed at sea level in Intel 16K DRAM's (1979) generated by alpha particles produced by radioactive contaminants



### **SEU in early DRAMs: "1" flips**





T.C. May and M.H. Woods, IEEE-TED26, 1979

Alessandro PACCAGNELLA

6/30



## **Critical Charge in DRAM's**

- Bit Flip may occur when a charge larger than a threshold value (Critical Charge) is collected at one sensitive node of the memory cell
- In DRAM's the Critical Charge is usually defined as  $Q_{crit} = V_c \cdot C_s$ , where  $C_s$  is storage capacitance
- Critical voltage,  $V_{\rm c}$ , is typically half the power supply voltage
- In SRAM cells things may be substantially different...



## 6-Transistor (6T) CMOS SRAM cell





J.Rabey, Digital Integrated Circuits, Prentice Hall, 1996

Alessandro PACCAGNELLA

### 6T SRAM cell: MOSFET status (hold condition)





J.C. Pickel and J.T. Blandford, IEEE-TNS29, 1982

Alessandro PACCAGNELLA

9/30

### 4T SRAM cell: a more compact design



S.E. Diehl-Nagle, IEEE-TNS31, 1984

Alessandro PACCAGNELLA

# **SE in CMOS inverter: OUT = 1**



Alessandro PACCAGNELLA

11/30

# **SE in CMOS inverter: OUT = 0**





P. Fouillat, EWRHE 2004

Alessandro PACCAGNELLA

12/30

### **SEU in SRAM cell**



### Upsetting a memory cell



P. Fouillat, EWRHE 2004

Alessandro PACCAGNELLA

13/30



### 6T-SRAM — Layout





J.Rabey, Digital Integrated Circuits, Prentice Hall, 1996

Alessandro PACCAGNELLA

14/30

## **SEU mapping in an SRAM cell**



Alessandro PACCAGNELLA

15/30

### **SEU Laser cross section in SRAM**



# **Testing SRAMs: heavy ions vs. laser**



Ô

P. Fouillat, EWRHE 2004

April 6, 2005

Alessandro PACCAGNELLA

17/30

### **Increasing SEU resistance of SRAM cells**

Different technological steps may be realized to improve the SEU Resistance/tolerance of SRAM cells:

- Enhance storage capacitance (STMicroelectronics)
- Use 6T cell design with TFT load devices



### Thin Film Transistor for 6T SRAM cell







Alessandro PACCAGNELLA

19/30

### **Increasing SEU resistance of SRAM cells**

Different technological steps may be realized to improve the SEU Resistance/tolerance of SRAM cells:

- Enhance storage capacitance (STMicroelectronics)
- Use 6T cell design with TFT load devices
- Use retrograde wells, i.e., highly doped implanted layers in order to reduce charge collection at the drain nodes



### **Retrograde well doping profile**



Alessandro PACCAGNELLA

21/30

### **Increasing SEU resistance of SRAM cells**

Different technological steps may be realized to improve the SEU Resistance/tolerance of SRAM cells:

- Enhance storage capacitance (STMicroelectronics)
- Use 6T cell design with TFT load devices
- Use retrograde wells, i.e., highly doped implanted layers in order to reduce charge collection at the drain nodes
- Eliminate <sup>10</sup>B from the external passivation layers and internal p-doped B rich regions: nuclear reactions from thermal neutrons are suppressed
- Use plastic packaging instead of ceramic, reducing the amount of radioactive alpha emitters around the Si chip



### Forecasting the CMOS scaling effect on SEU



J.C. Pickel and J.T. Blandford, IEEE TNS29, 1982

Alessandro PACCAGNELLA

23/30

## **Critical charge in SRAM: status of the art**

#### • Usually, critical charge:

- $Q_{crit} = V_{c} \cdot C_{s}$
- V<sub>c</sub> ~ V<sub>DD</sub> [/2]
- $-C_{s} \sim W \cdot L \cdot \epsilon_{ox} / t_{ox}$
- $Q_c \sim L^2$
- Collected charge:
  - Q<sub>coll</sub> ~ L
- However in SRAM:
  - $Q_{crit} = V_{c} \cdot C_{s} + I_{restore} \cdot T_{flip}$
- Further, parasitic capacitance from Local Interconnections (LIC) may strongly increase C<sub>s</sub> thus improving SEU immunity (Samsung, IEDM2002)



J.L. Leray, EWRHE 2004



Alessandro PACCAGNELLA

### **SRAM scaling trends**



R. Baumann, RADECS Short Course, 2001

Alessandro PACCAGNELLA

25/30

# **Multiple bit upset**

- A single ion may flip two bits or more inside the same memory word: MBU
- Identify safe locations for other bit cells
  - Optimize layout aspect ratio and critical node locations
  - Determine minimum spacing of bits in word line



D.G. Mavis, EWRHE 2004

Alessandro PACCAGNELLA

**All Pairs** 

26/30

## **Estimation of SRAM SER in space ambients**

- Estimates for a 0.25 µm SRAM technology, 8 bit word + 4 EDAC bits
  - Area ~ 100  $\mu$ m<sup>2</sup>
  - Single bit error rate ~ 7.5 x  $10^{-9}$  /day (GEO)
- Error latency
  - Word single bit error rate ~  $9.0 \times 10^{-8}$  /day (GEO)
  - Word double bit error rate ~ 8.1 x  $10^{-15}$  /day
  - No special scrubbing necessary
- Proton worst case environments (~1000x error rate)
  - Word double bit error rate ~ 8.1 x  $10^{-9}$  /day
  - Periodic scrubbing could be advantageous

#### D.G. Mavis, EWRHE 2004

### **SRAM design alternatives**

- Conventional 6T cells with EDAC
  - Small size, high performance
  - Low LET upset threshold
  - High error rate in some space environments (such as in the proton rich belts)
- RC hardened 6T cells with EDAC
  - Large size, slower performance
  - High LET upset threshold
  - Difficult to implement in deep submicron technologies
- Hardened 6T cells with additional capacitors (STM)
  - No performance penalty claimed
  - Requires dedicated process steps



From D.G. Mavis, EWRHE 2004

### Changes in technology vs. SRAM SEU





### Conclusions

- Reversed biased junctions of off-state MOSFET drains collect charge produced by a single ionizing particle, possibly leading to SRAM cell bit flip
- SEU cross section saturates at high LET
- Critical charge for upset decreases with CMOS minimum feature size, but it may be enhanced by parasitic capacitances coming from interconnections
- SBU's can be compensated by EDAC; MBU's are much less likely but more dangerous
- SEU rate of cell array is not increasing with memory generation, but new problems may come from upsets in the circuit external to the memory array and SE Transients

