Single-event effects in SRAM-based FPGAs: effects and possible solutions

Matteo Sonza Reorda,

Luca Sterpone, Massimo Violante

Goal

- Discuss how Single Event Effects (SEEs) affect designs implemented through SRAM-based FPGAs and analyze hardening solutions
- Constraints:
 - Non rad-hard SRAM-based FPGAs are used
 - SEEs in the FPGA's configuration memory are considered, only
 - System level view (Cross section? What is that?)

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

- SRAM-based FPGAs are particularly appealing:
 - Very high flexibility
 - High performance
 - High pin count
 - Low costs for low-production volumes compared to ASICs
 - Reduced turn-around time
- Good candidate for replacing antifuse FPGAs in critical applications

FPGA's architecture (I)

- Array of blocks
- Each block consists of an array of logic elements and routing channels
- Information about how the logic elements and routing channels work is stored in a SRAM-based configuration memory

FPGA's architecture (II)

- Xilinx (Spartan, Xilinx)
- Altera (Cyclone, Stratix)
- Lattice (LatticeEC, LatticeECP)

SEE in SRAM-based FPGAs

- SRAM-based FPGAs embed:
 - User memory (registers, memory blocks, …)
 - Configuration memory (LUTs, routing channels,...)
- SEEs modify either:
 - The user memory ⇒ information that the circuit elaborates
 - The configuration memory ⇒ information that defines how the circuit works!

User vs Configuration memory

SEEs in the configuration memory are not negligible

Device	User memory [kbits]	Configuration memory [kbits]
XC2VP2	~200	~1,500
XC2PX20	~1,600	~8,000
XC2VP100	~8,000	~35,000

Failure rate due to SEEs

 FIT (1 failure in 10⁹ hours) for some SRAMbased FPGAs (Xilinx and Altera)

Altitude [feet]	FIT	
0	1,150	
5,000	3,900	
60,000	540,000	

 Typical FIT rate for a highly reliable application: 10 to 20

Up to now we understood that...

- SRAM-based FPGAs are very sensitive to SEEs
- Both user memory and configuration memory must be hardened
- Techniques are needed to:
 - Understand how SEEs affect FPGA's resources
 - Make designs insensitive to SEEs

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

A system-level view of SEE effects

SEEs in user memory

- Close to SEEs in ASICs
- Easy to model: bit-flip of a flip-flop or register
- Easy to predict: simulation of the circuit is sufficient
- Not addressed here
- SEEs in configuration memory
 - Difficult to model: the effect depends on what the affected memory cell controls
 - Difficult to predict: a detailed model of the FPGA is needed

SEEs in configuration memory

Effects on:

- How logic functions are implemented
- How FPGA's resources are initialized
- How routing channels are used
- To model them it is mandatory to understand:
 - The resources available on the FPGAs
 - The mapping between configurationmemory's bits and FPGA' resources

FPGA's architecture

SEE in FPGA's resources

SEEs affecting CLB resources result in:

- LUT defects: modifications to the implemented logic function
- MUX defects: modifications to the intra-CLB routing
- Initialization defects: modifications to the initialization of the CLB internal components (e.g., reset's type)

SEE in FPGA's resources (VI)

- SEEs affecting the configuration memory bits controlling inter-CLB routing:
 - Open: one enabled routing segment is disabled
 - Bridge: one enabled routing segment is disabled and a disabled one is enabled
 - Short: a routing segment is enabled that shorts toghether two already enabled routing segments

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

Hardening approaches

Two needs:

- Masking: to prevent the SEE's effects to propagate to the system's outputs
- Correction: to remove the SEE's effects from the system

Proposed solutions:

- Modify the circuit architecture the system implements to achieve masking
- Modify the system architecture to achieve correction

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

Masking

TMR approach:

- Triplicate any design element (logic, memories, interconnections, and inputs/outputs)
- Vote with majority voter (assumed as fault free)

Analysis of the TMR (I)

- Injection of SEE in the FPGA implementing TMR circuits
- SEE effects classified according to the affected resource:
 - CLB defects
 - Inter-CLB routing defects
- Two possible SEE effects:
 - Critical: it escapes the TMR
 - Not critical: the TMR masks it

Analysis of the TMR (II)

CLB defects:

- LUT defects are not critical:
 - Each function is implemented by 3 identical LUTs
 - One is faulty, but the other 2 continue to work
 - The voter decides correctly by voting 2 out ot 3
- MUX defects are critical if:
 - Same CLB implements 2 replicas Mi and Mj
 - Both Mi and Mj are faulty
- Initialization defects are critical if:
 - Same CLB implements 2 replicas Mi and Mj
 - Both Mi and Mj are faulty

An example (I)

M1 and M2 implemented by the same CLB, M3 by a different one

An example (II)

LUT defect

An example (III)

The MUX defect changes from clk to clkn

An example (IV)

The initialization defect changes reset from async to sync

Analysis of the TMR (III)

- Inter-CLB routing defects:
 - SEEs may be critical or not depending on how the design is routed
- Golden rule:
 - There is a multiple effect if different nets of different TMR replicas are routed by the same routing resource

TMR	Injected faults [#]	Wrong Answers [#]
8-bit adder	15,000	1,352
16-bit adder	15,000	1,692
8-bit multiplier	15,000	1,977
Filter	15,000	1,981

Lessons learned

Lesson 1:

- Do not place Mi and Mj in the same CLB
- Simple to implement: work on the placement constraints

Lesson 2:

- Avoid routing different nets of different TMR replicas by the same routing resource
- Difficult to implement:
 - Ad-hoc developed router
 - Need a very good knowledge of FPGA's inter-CLB routing architecture
 38/45

Improved TMR	Injected faults [#]	Wrong Answers [#]	Reduction
8-bit adder	15,000	30	45x
16-bit adder	15,000	41	41x
8-bit multiplier	15,000	23	86x
Filter	15,000	44	45x

Overheads

	TMR		Improved TMR	
Circuit	Speed [MHz]	Area [# slice]	Speed [MHz]	Area [# slice]
8-bit adder	86	100	64	96
16-bit adder	85	103	62	105
8-bit multiplier	84	127	54	125
Filter	65	132	58	138

Up to now we understood that...

- TMR is very simple to implement and it provides hardening against some of the SEE's effects
- Some SEEs still escape TMR and even commercial implementations (e.g., XTMR by Xilinx) suffer from the same problem
- The place and route operations must be performed with dependability oriented tools (not yet available commercially)

Outline

- A system-level view of SEE effects
- Hardening approaches: introduction
- Hardening approaches: masking
- Hardening approaches: correction
- Conclusions

Correction (I)

- Restore che correct configuration memory
- Scrubbing:
 - The whole configuration memory is periodically reloaded
- Partial Reconfiguration + Scrubbing:
 - The configuration memory is divided into separate segments
 - Each segment is read back one at a time and compared with a reference copy
 - If a mismatch is found, only the faulty segment is reloaded

Correction (II)

- SRAM-based FPGAs may be used in critical applications provided that suitable masking and correction techniques are used
- Masking techniques are not mature enough (some faults still escape)
- Design tools may help in reducing escaped faults.