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Foreword

v What we will be talking about:
o ASICs (application-specific ICs)
o« CMQOS technologies only
o Effects: TID, SEU, SEL

o How to conceive ASICs able of surviving
to and functioning in a radiation
environment
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Foreword: the MOS transistor
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Foreword: CMOS technology.
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Foreword: CMOS technology
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Foreword: | - \V/ Characteristics
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TID effect on "main” transistor
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Transistor level leakage
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Transistor level leakage

——————
This is for LOCOS, very similar for ST
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Transistor level leakage: example

e
NMOS - 0.7 um technology - t,, = 17 nm
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IC level leakage
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IC level leakage - FOXFETSs
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TID-induced failure

v In modern technologies, leakage
current is typically the Killer

Submicron COTS FPGA TID Tolerance
0.35 M to 0.6 mMm
NASA/GSFC
July 3, 1998

—— RT54SX16 Proto, 0.6 mm, 3.3V, MEC
—— A548X16 Proto, 0.35 mm, 3.3V, CSM
—— A42MX09, 0.45 nm, 5.0V

QL3025, 0.35 nm, 3.3V, TSMC
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Is it a problem for me?

N NN

Which TID can be considered as “safe”?

|s there a dependence on design (logic vs analog, ...)?
Is there variability with time (different results for different

production lots)?

Is there a technological dependence on the TID tolerance?
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Risk management

v As seen before, there are many variables influencing
the final radiation hardness of an IC

v The “safer” the circuit is designed, the more
“‘expensive’” it is (area, performance, complexity, ...)

v Risk reduction comes at some cost

v In the following, a procedure to RELIABLY designing
radiation tolerant ASICs is presented. It reposes on
physics, not on specific process recipes, hence it
gives very predictable results.
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Radiation hard CMOS processes

v “Usual solution”: technology hardening
v TID hardness is guaranteed

but

v Low volume in fabs => yield can be low, and
unreliable radiation performance for large
quantities

v Cost is very high

v Very limited number of processes still available
today, and risk of unavailability in the long run

v Analog performance often not very good
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Moore’'s law

1965: Number of Integrated Circuit components will double every year
G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics, vol. 38, no. 8, 1965.

1975: Number of Integrated Circuit components will double every 18 months
G. E. Moore, “Progress in Digital Integrated Electronics”, Technical Digest of the IEEE IEDM 1975.

1996: The definition of “Moore’s Law” has come to refer to almost anything related to the semiconductor
industry that when plotted on semi-log paper approximates a straight line. | don’t want to do anything

to restrict this definition. - G. E. Moore, 8/7/1996
P. K. Bondyopadhyay, “Moore’s Law Governs the Silicon Revolution”, Proc. of the IEEE, vol. 86, no. 1, Jan. 1998, pp. 78-81.
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Moore’s law fundamentals

—_—
v For every generation: Half pitch definition
o CD U DRAM  MPUJ/ASIC

e Areax 0.5
o Chipsizex 1.5

o Structural
improvement x 1.3 L

o N of components x 4
o Clock frequency x 1.4 -
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CMQOS technology scaling
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Radiation effects and t,, scaling

Damage decreases with gate oxide thickness
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N.S. Saks et al., IEEE TNS, Dec. 1984 and Dec. 1986
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Tendency confirmed

v Gate oxides in commercial CMOS technologies did follow the
curve drawn by Saks and co-workers!

Technology
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Radiation-tolerant layout (ELT)

Leakage path
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Function of the guardring

VDD VSS VSS

-

The heavily doped p+ guardring
SUBSTRATE “interrupts” possible conductive

paths (inverted p substrate), hence

preventing inter-device

leakage currents

NN+ WELL CONTACT + SOURCE

NWELL
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Radiation tolerant approach

: | TID
AVy < t, + ELT'sand Radiation
guard rings Tolerance
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Layout example (inverter)

P+ guard ring

metal polysilicon Voo

n+ diffusion [ p+ diffusion

LNL school, March 2005 Federico Faccio - CERN



Outline

v Foreword: CMOS technologies

v TID: Total lonizing Dose
o Effects (reminder)

o Solutions
» Results and difficulties

o Irends in state-of-the-art technologies

v SEESs: Single Event Effects

o Effects (reminder)
o« SEEs and scaling
o Solutions

v Conclusion

LNL school, March 2005 Federico Faccio - CERN



Effectiveness of ELT's

0.7 um technology - W/L = 2000/1.5
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Effectiveness of ELTs

0.25 um technology - W/L =30/0.4 - ELT
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Field oxide leakage

————
FOXFET 14.4/2.6 without gate, with guardring

0.5 um technology
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Summary results in 0.25um

—
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Noise performance

W=2000pum; L=0.5um
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Advantages of this approach

v Relies on physics (thickness of gate
oxide): not process-dependent

v' Allows for using state-of-the-art
technologies:

o Low power
« High performance

o High throughput, high yield, short
turnaround times

o LOwW cost
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Difficulties for this approach

v Peculiar ELT behaviour
o Modeling of ELT (size W/L?)
o Limitation in aspect ratio
o Asymmetry

v Lack of commercial library for digital
design

v’ Loss of density
v Yield and reliability???
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)

Modeling of ELTs (1

Federico Faccio - CERN
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Modeling of ELTs (2)

—————————]
d-d’
1- a 2

1.13In1 L
o

A 4

Laawn | EStimated | Extracted

(W/L)ett | (W/L)egt v 1 shape only supported (size
0.28 14.8 15 of “c” fixed)
e 1= "o v Custom routines and layers
e - v integrated in design kit for
i 5.1 5.2 . .
3 3 39 extraction/design
5 26 26 checking/computation
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Limitation in the aspect ratio

Aspect ratio = W/L

15
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12 -
11 -
10 -

Effective aspect ratio

N WO b 01 O N
e o n.q

0 1 2 3 4 5 6 7 8 9 10
Gate Length [um]

LNL school, March 2005 Federico Faccio - CERN



Asymmetry (1)

L=0.28 um Gg =11.9uS Gpg=9.6 uS
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58.0E-05 d — Drain Outside
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Asymmetry (2)

100.0 . e S : ]

L® ——ELT Drain Inside

(7)) -=-ELT Drain Outside

= -+ Normal Transistor

- 10.0

O

(=

o -

o 1.0 \\\\Q

2 \SE\\:?

= I

O 0.1 | |
0 05 1 15 2 25 3 35 4 45

LNL school, March 2005

Gate Length [um]

Federico Faccio - CERN

5

L (um)| AG/Gp,
0.28 | 19 %
0.36 | 23 %
05 [ 33%

1 53 %
3 70 %
5 75 %




Lack of commercial library (1)

Radiation tolerant

design :
Use of enclosed
NMOS transistors
Use of guard rings to
isolate all n*
diffusions at different
potentials (including
n-wells)

NAND3
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Lack of commercial library (2)

v Example of core cells
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Lack of commercial library (3)

CERHNLIB Digital Standard Cells

Cell Name Size Area Cell Name

fur) | (urn®)

Core Logic 16 0 Logic
Boolean Qutput Pads

Inverter 1% Drive E_lnvl SmA Drive Standard OB8mA L
16mA Drive Standard OB1BmA / I S O
20mA Drive Standard OB20mA

Inverter 2 Drive E_Imé2

Inverter 43 Drive E_Ined
SmA Drive with Slew Rate control OBSR3mA
16rmA Drive with Slew Rate contral OBSR16mA

Inverter 8% Drive E_ImA&
L]
20maA Drive with Slew Rate control CBSR20maA, I I b ra ry

2 Input MAND E_Mand2
Input Pads

E_Mand3
CWOS Inverter Input

Standard

E_Mor2

LVDS I/0 Pads
Complex Gates LwDS T LwDStx 105985
2-4Wide 2-Input AND-OR E_A0Z22 LvDE R LvDSrx 105985 C I |
2-4Wide 2-Input AND-OR-INVERT |E_ADIZ2 e S
2-Wide 2-Input OR-AMND-INVERT |E_DAIZ2 I°C interface 'O Pads
20rmA Open Drain Output OD20mA
Multiplexers Bidirectional with 20m& Open Drain 10020mA
E_Mux2
E_Muxd Power Pads

ok

o

E_MNor3
E_Mord
E_Xnor2

[mapin R - s P R

ra

DD for periphery & core WOD
Bufter ¥4 Drive E_Buf4 WDD for periphery wDD_CORE
Buffer X3 Drive E_Bufs 0D for core WOD_PERI
WSS for periphery & core W33
Simple Cells WSS for periphery W3S_CORE
Logic O LOGICO WSS for core W33_PERI
Logic 1 LOGIC Corner for FO periphery CORMER

Adders Guard-ring cells
1-bit Half Adder
1-bit Full Adder | Endcap Cell Left CAPL
Endcap Cell Reft CAPR

Flip Flops Filler Cell FILLERCELL
Static D FLIP-FLOP

Static D FLIP-FLOP with Reset
Static D FLIP-FLOP with Set
Static D FLIP-FLOP with Set & RqE_
Static D Flip Flop with Scan
Dynamic TSPC D FLIP FLOP

D-Latch with Reset
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Lack of commercial library (4)

v Development of a "Design Kit” for CADENCE
DFII version 97a

v Supported Design Flows:

o Analog
* Analog simulations (HSPICE).
» Device extraction.
» Physical Design Verification (DIVA, DRACULA).

. Digital
* Logic Synthesis (SYNOPSYS).

 Digital Simulations (VERILOG).
* Place & Route (SILICON ENSEMBLE).

o Mixed Signal
» Simulations (HSPICE/VERILOG).

LNL school, March 2005 Federico Faccio - CERN



Lack of commercial library (5)

v P&R tool:
Silicon
Ensemble

v Maze Router

« No channels

o Flip &Abut
the cells

v Special support
for Rad-Tol
layout design.

v Interrconnection

3 metal layers,
upgradable to 6
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Lack of commercial library (6)

Example: control
logic of the APV25
chip

No of cells: ~ 900
Area: 192,672um?
Metal Layers: 3

Synthesized Logic
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Existing libraries

v List is not exclusive:

« CERN in 0.25um
» “Daughter” libraries in PSI, LBL, Fermilab

e IMEC (for ESA) in 0.18um

o Mission Research Corporation (for
Aerospace Corporation) in 0.18um
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Loss of density

v Radiation Tolerant
technigues introduce a
~70% lavout area

o lay
overhead

v Gate density is T———
larger when compared to _' WWMMMMM
a 0.8um technology — MM
« Example: ring oscillator L pe—
with 1280 inverters in 0.8 w%mm
and 0.25mm technologies e
(0.25 uses the CERN radtol i .”Wu i
Ilbrary) TN u‘""m|_
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Yield and reliability?

v Construction
analysis performed
on several chips

v Circuits produced,
qualified and tested

In thousands (100
different designs!)

v No concern on yield
or reliability found
yet...
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“Large” scale production

v Relatively large number of project in production, for quantities
between 50 and 450 wafers (200mm size)

Volume per project

500
450
400

N 350
-§ 300
g zgg Production summary
3 1200 18
g 150
100 16
50 1000 | m N of wafers produced ¥
0 5 m N of projects in production
S 800 - 12
H
o 10
o 600 -
5 - 8
©
Z 400 i - 6
o
4 -4
200 — | | i
m il 3
0 L HEE

Y 1999 Y 2000 Y 2001 Y 2002 Y 2003 Y 2004

Forecast
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ASICs examples (1)

v APV25: readout of Silicon
tracker detector of the CMS
experiment

v. 128 channels, analog output
v Irradiation performed:

o X-rays up to 10 Mrad
(qualification during
production, 90 samples),
and 100 Mrad (1 sample)

o 300 MeV/c pions up to
2x10'% p/cm?

o Heavy lons up to 62
MeVcm?mg:'

LNL school, March 2005 Federico Faccio - CERN



ASICs examples (2)

v GOL, optical link driver

(Serlallzer -+ Iaser e : ._7::_ S I ._:-: i LR

driver) @ 1.6 Gbit/s il | || | e ﬁ

v lrradiation perform ed: e 1 ol = LI ?'[f

o X-rays up to 10Mrad i ' ' || 1

« 60 and 300 MeV

protons up to

103 p/cm?

o Heavy lons up to

110 MeV cm? mg:’ &
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ASICs examples (3)

v Alice Pixel1, readout of silicon
pixel detector of the ALICE
experiment

v 2.1cm?, 8000 analog channels,
13M transistors

v Irradiation performed:
o X-rays up to 30 Mrad

o« 60 MeV protons up to
6.4x10'2 p/cm?2

o« 450 GeV/c protons up to
9x1074 p/cm? in target area
(prototype of the ASIC)

e« Heavy lons up to 110
MeVcm?mg:?

o 150 GeV pions (100 hours)
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ASICs examples (4)

v CCU, control chip
for the CMS tracker
detector (fully digital
chip, 120kgates)

v Irradiation
performed:
. X-rays up to 10 ’
Mrad

o 300 MeV protons up | i
to 3x10"3 p/cm? EUPIE N IO [RE T

RiEREiERR AR A e
[
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Other edgeless designs

v Other “edgeless” transistor designs are possible !

G G
. . . . . B

Ringed Source Ringed Interdigitated
G

Butterfly
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Trends iIn 130nm node

v Exploring more advanced CMOS
technologies: 130nm node

v’ Similar technologies from 2 vendors
have been selected and measured (at
the transistor level)

v Results are very comparable between
the two vendors
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130nm: enclosed transistors

v All TID irradiations with X-rays

v Negligible degradation for all thin-oxide enclosed
transistors (NMOS and PMOS), for all parameters

NMOS 1.63/0.12

Enclosed Regular Transistors up to 70Mrad (SiO2) PMOS 10/0.12

1.E-02 ‘ ‘
1E-03 | T - -PMOS - pRIGSEE s fne
1.E-04 s ]

— 1.E-05 N

<€

= 1.E-06

% 1.E-07 el

S 1.E-08 “7/ NMOQOS prerad ||
1.E-09 — NMOS 70Mrad
1.E-10 / \. ~ |- - PMOS prerad |/
1.E-11 Rl PMOS 70Mrad |
1.E-12 K | |

15 1.0 0.5 0.0 0.5 1.0 15
VG[V]
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130nm: wide linear FETs

v Width larger than about 1um

v- Comparable to enclosed above threshold

v NMOS: edge effect well visible in subthreshold!

v Magnitude of effect can change with hardware “vintage™!

Transistor size 2/0.12

1.00E-02
1.00E-03 |
1.00E-04 |
1.00E-05 |
NMOS, prerad
RHE vag NMOS 3Mrad
< 4 00E-07 - NMOS 136Mrad
2 ¥ooc08 PMOS prerad
' — — PMOS 3Mrad
1.00E-09 | PMOS 136Mrad
1.00E-10 / \
1.00E-11
1.00E-12 : : ; : :
15 -1.0 0.5 0.0 0.5 1.0 15
Vg (V)
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130nm: narrow linear FETS

1.00E-03

v Effects increase for smaller W
v Strong edge effect: Narrow Channel Effect
v All transistor types affected

Transistor size 0.16/0.12

1.00E-04

1.00E-05 -

1.00E-06 -

1.00E-07

Id (A)

1.00E-08 -

1.00E-09 -
1.00E-10 -

1.00E-11

1.00E-12

T

NMOS prerad
NMOS 3Mrad
NMOS 136Mrad
PMQOS prerad
PMOS 3Mrad
PMOS 136Mrad

N

-1.5
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130nm: FOXFETSs

v Transistors on Field Oxide

v PC or M1 “gate”

v N+ diffusion or Nwell Source & Drain
v Nwell-Nwell has the largest current

FoxFET NWell 200/0.92
1.00E-03

Gate 1.00E-04

| 1.00E-05
Drain 1.00E-06 |

Source

1.00E-07 -
____.-—-'—"f, —— prerad

1.00E-08 - 1Mrad
1.00E-09 — 136Mrad

oy

1.00E-10 -
1.00E-11

1.00E-12

1.00E-13 \ ‘ ‘ ‘
0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

Vg (V)
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130nm: summary

v Enclosed transistors are very good, as
expected (very thin gate oxide)

v Standard linear transistors are not too bad,
and can possibly be used as such for some
applications (careful to narrow channel
effect!)

v From FOXFETs, lateral isolation could be a
problem, at least it can increase the power
consumption

v Globally, TID tolerance is better than in older
technologies, even for standard layout
designs
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Outline

v Foreword: CMOS technologies

v TID: Total lonizing Dose
o Effects (reminder)
o Solutions
o Irends in state-of-the-art technologies

v SEEs: Single Event Effects

o Effects (reminder)
o« SEEs and scaling
o Solutions

v Conclusion
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SEU (Single Event Upset)

——
Static RAM cell Vo, Voo
Highly

0 1 ~“(: ~“(: energetic
—[>o B B / particle
_><I>o N
1 0

GND GND

Sensitive Volume SV
Critical Energy E_;
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Single Event Latchup (SEL)

Electrical latchup might be initiated by electrical transients on
input/output lines, elevated T or improper sequencing of power supply
biases. These modes are normally addressed by the manufacturer.

Latchup can be initiated by ionizing particles (SEL)

Voo
\Y; \Y; \Y; Y, < ERE
DD DD ss ss R1
contact source source contact
ng
p substrate R3
Vs

A.H. Johnston et al., IEEE TNS, Apr. 1996
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"Digital” Single Event Transient

v Particle hit in combinatorial logic: with modern fast
technologies, the induced pulse can propagate through
the logic until it is possibly latched in a register

v Latching probability proportional to clock frequency
v Linear behaviour with clock frequency is observed

A

Total Error = SET + SEU

Errors

— PPl »Register

Combinatorial logic

SEU

Frequency
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SEU and scaling: forecast

* \/p reduced
 Node C reduced

* New mechanisms
for SEU

(=)
£
;
D
<
}—
i
-l
E .
Q
=
7]
o
L
=

" Feature Size (um)

P.E. Dodd et al., IEEE TNS, Dec. 1996

From the above, it looks like the SEU problem worsens with
scaling
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SEU and scaling: reality

v All sources agree: DRAM sensitivity has been scaling down (cell
area scaling has outpaced the decrease in stored charge).

v Picture somewhat less clear for SRAMs

v P.Hazuka et al (work funded by Intel) developed a model to
predict SER scaling with Lg. The results suggest that the per-bit
sensitivity decreases —at least- linearly with Lg

v Overall: FIT/MB decreases, but FIT/chip increases

v~ Not only Vdd and node capacitance have to be taken into
account: sensitive area and charge collection efficiency are also
Important and change with technology generation!
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SEL and scaling

e
v Retrograde wells All these_issues help In
v Trench isolation preventing SEL, but
v Vi reduced they might not be always
effective
Vop Vb Vs Vs

contact source source contact

p substrate R3
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v Foreword: CMOS technologies

v TID: Total lonizing Dose
o Effects (reminder)
o Solutions
o Irends in state-of-the-art technologies

v SEESs: Single Event Effects

o Effects (reminder)
o SEEs and scaling

o Solutions
« SEU
« SEL

v Conclusion
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Solutions: SEU

v Technology level: epitaxial substrates, SOI,...
v Cell design: SEU-tolerant FFs or memories

v Redundancy

o Iriple Modular Redundancy (TMR): triplication and
voting

« Encoding (EDAC)

v Always to be considered at system level
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Cell design (1)

v' Increase the critical charge by
Increasing the node capacitance:

o Design larger transistors — also more driving
strength

2
o~
:
2
=
-
z
Q
£
W
o
=
l_..

Feature Size (um)
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Cell design (2)

v Increase the critical charge by increasing the
node capacitance:

o Add “extra” capacitors
» Metal/metal to avoid loosing space

Upset rates in
proton environment:
- twofold decrease

s andard for the “oversized”

¢+ Toverloaded”SR - tenfold decrease
0 4 50 60 70 8 for the “overloaded”

LET [MeVcm?/mg]
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Cell design (3)

v Increase the critical charge by increasing
the node capacitance:

o Add “extra” capacitors
« Special technology options

g DR AM enpaciiors
pdded 1o the Flip-flop

o I e

Added capacitor value [F)
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Cell design (4)

v Use special cell architectures

« SRAM cell with added resistors, delaying the propagation of
the perturbation, so allowing the cell to recover its correct

state
VEE /58

T

MNP
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Cell design (5)

v Use special cell architectures

o« Whitaker SRAM cell

o It uses the fact that n+ diffusions (NMOS) can only be induced
to change state from 1 to 0, and p+ from 0 to 1
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Cell design (6)

v Use special cell architectures
o HIT (Heavy lon Tolerant) cell
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Cell design (7)

v

v Dual Interlock ensures SEU protection against hit on one node
v Writing in the cell requires access to 2 nodes
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Cell design (8)

v cell weakness:

o Recovery time needed after SEU
» Output glitch
A rising edge of the clock during recovery time can
store wrong data in the following pipeline stage

e Local clock buffers

o Charge collection by multiple nodes is not
negligible! (in 90nm technology, just 10x SEU
rate improvement)
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Cell design (9)

v Use special cell architectures
o cell

X4

CK2 4 v
oo bl
- | |—|
CK2) |CK1 CK2

CK2| |CK1 =

‘ X2
D

DLPC X1 CK2

aal o AR
cil lek o
B Q
CK2
|_

X3

—
(<)
y—
172}
c
@
—
—
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Cell design (10)

v Use special cell architectures
o Modified DICE cell (as storage element,

unclocked)
Area penalty compared to
1.E-07
A Hardened cell Standard FF
= 1.E-08 " \
NE_, 1.E-09
% 1.E-10
G 1.E-11 A A A
1.E-12 . : : : deremis
0 20 40 60 80 100

Particle LET (Mev cm?®/mg)
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Cell design (11)

v Use special cell architectures

o [emporal sampling with internal clock delays
(after Mavis) effective against digital SET

BT T T T T e | R T T 1

| | |
* Transient can only be IN_J /b a}— :
captured by 1 latch I HPFF ! !
« Sensitive to e ! ) :
transients on clock line : ¢ D a}— s MAJ |——
« Many variations to : [ a7 -p°FF| | :
this concept exist (one : : :
can delay data instead ; D QF— :
of clock, for instance) : 287 —pP| | :

| __ Temporal Sampling hsynchronous Voting
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Solutions: SEU

v Technology level: epitaxial substrates, SOI,...
v Cell design: SEU-tolerant FFs or memories

v. [Redundancy.

o Iriple Modular Redundancy (TMR): triplication and
voting

« Encoding (EDAC)

v Always to be considered at system level
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Redundancy: TMR (1)

v Triplication with 1
voter

——
v The state machine is instantiated

Combinatorial
Logic

3 times, with 1 voter

v~ An SEU can corrupt the output of
one of the blocks, but majority

Combinatorial
Logic

>

Register

voting restores the correct state

v An error in the voter instead
corrupts the state! —

Combinatorial
Logic

>

Register]
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v Triplication with 3
voters

v The state machine is instantiated
3 times, with 3 voters

v~ An SEU can corrupt the output of
one of the blocks, but majority
voting restores the correct state

v An error in one of the voters is
also restored

LNL school, March 2005

Redundancy: TMR (2)

2!

—

b L

Combinatorial . Majority
: —>>
Logic Register Voter
Combinatorial . MajorityJ
: —>
Logic Register Voter \wp
Combinatorial > Register MajorltyJ>

Logic
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Redundancy: TMR (3)

—
v Integrating the __ Registerg—g "
registering/voting part of
TMR state machines in __Registercpd VN
one single cell (G.Cervelli-
CERN/MIC) — Registe —NEOY_|

Y

v 3 data inputs
v 3 data outputs
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Redundancy: TMR (4)

Integrating the
register/voting in one
single cell: the
schematic L

Very compact layout

%
%
%

14 transistors B

o Better than XOR+MUX
style —

Fast
o 2 logic levels only

o« Possible to save the
inverter

<FJ [ R e A R A O
S
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Solutions: SEU

v Technology level: epitaxial substrates, SOI,...
v Cell design: SEU-tolerant FFs or memories

v. [Redundancy.

o Iriple Modular Redundancy (TMR): triplication and
voting

o« Encoding (EDAC)

v Always to be considered at system level
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Redundancy: encoding (1)

v Adding redundant information (bits) and
encoding-decoding
o Used for data transmission and for memories
o Requires complex encoding-decoding logic

o« Several different codes can be used
(Hamming, Reed-Solomon, BCH, etc.)

Encoder Decoder

Memory array (each word with redundant bits)
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Redundancy: encoding (2)

—
v Example: Hamming encoding (1950)

k = number of message bits
q = number of check (parity) bits
n = number of word bits

Minimum distance between words = 3
=All valid words in the code differ AT LEAST by 3 bits
= It can be used for single error correction, double error detection

i i
- N DA |
I I £

n = k+q n < 2%1
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Redundancy: encoding (3)

—
v Example: Hamming encoding (1950)

Example of encoding for k=8 q=4 n=12

Encode in a way requiring “as easy as possible” encoding/decoding logic
1. Check bits in powers of 2 positions in the word (position 1,2,4,8)
2. Other word bits are the message bits
3. Each check bit computes the parity for some of the word bits:
Position 1: check 1 bit, skip 1 bit, etc. (bits 1,3,5,7,9,11)
Position 2: check 2 bits, skip 2 bits, etc. (bits 2,3,6,7,10,11)
Position 4: check 4 bits, skip 4 bits, etc. (bits 4,5,6,7,12)
Position 8: check 8 bits, skip 8 bits, etc. (bits 8,9,10,11,12)

Word to encode: 10101010

word 1111010. 1010
position 123 456 7
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Redundancy: encoding (4)

—
v Example: Hamming encoding (1950)

Word to encode: 10101010

Encoded word 1 010 1010
position 1 2 3 4 5/61(7 8 9 101112
SEU changes to 1 000 1010

(o))

Check the parity bits in the received word:

Position 1: OK

Position 2: wrong

Position 4: wrong

Position 8: OK
The position of wrong bit is the sum of the wrong positions, that is
Position 6!
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Outline

v Foreword: CMOS technologies

v TID: Total lonizing Dose
o Effects (reminder)
o Solutions
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v SEESs: Single Event Effects
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Reducing SEL sensitivity

The best solution is to decrease the gain of the parasitic pnpn structure.
Technological and layout solution can help in that respect:

Technological => use of epitaxial substrates and retrograde wells
=> use of trench instead of junction isolation

Layout => increase the distance between complementary devices
=> use guardrings
=> use lots of substrate and well contacts

VDD VDD VSS VSS VSS
contact  source

guardring source contact

D+ 7

-
p substrate R3

N\
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Conclusion

v Design of radiation-tolerant ASICs is
possible, using commercial-grade CMOS
technologies, and achieving tolerance to high
TID levels

v SEU rates can be decreased with proper
engineering (study of environment,
iIntroduction of tolerant cells, redundancy,
encoding, etc.) and should always be
considered at the system level
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Further reading

% General material on radiation effects:

o The best source is the “archive of Radiation Effects Short Course Notebooks, 1980-2002” collecting the courses given at the IEEE
NSREC conference (CD sold by IEEE)

v On Enclosed Transistor Layout:
. Ph.D. thesis describing results in 0.25um technology:
o G.Anelli, “Conception et caractérisation de circuits intégrés résistants aux radiations pour les détecteurs de particules du LHC en
technologies CMOS submicroniques profondes®, Ph.D. Thesis at the Politechnic School of Grenoble (INPG), France, December 2000,
availeble on the web at the URL: http://rd49.web.cern.ch/RD49/RD49Docs/anelli/these.html

. Paper containing all references on the work done at CERN on this subject: F.Faccio, “Radiation Issues in the new generation of high
energy physics experiments”, Int. Journal of High Speed Electronics and Systems, Vol.14, No.2 (2004 ) 379-399

v On SEU-tolerant Cells:

o Increased capacitance:

. F.Faccio et al., “Single Event Effects in Static and Dynamic Registers in a 0.25mm CMOS Technology”, IEEE Trans. Nucl. Science, Vol.46,
No.6, pp.1434-1439, December 1999

. F.Faccio et al., “SEU effects in registers and in a Dual-Ported Static RAM designed in a 0.25mm CMOS technology for applications in the
LHC”, in the proceedings of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, September 20-24, 1999, pp.571-575
(CERN 99-09, CERN/LHCC/99-33, 29 October 1999)

. P.Roche, F.Jacquet, C.Caillat, J.P.Schoellkopf, "An Alpha Immune and Ultra Low Neutron SER High Density SRAM", proceedings of IRPS
2004, pp671-672, April 2004

. Special SEU-tolerant cells:

. R.Velazco et al., 2 CMOS Memory Cells Suitable for the Design of SEU-Tolerant VLSI Circuits”, IEEE Trans. Nucl. Science, Vol.41, No.6,

p.2229, December 1994

0 T.Calin et al., “Upset Hardened Memory Design for Submicron CMOS Technology”, IEEE Trans. Nucl. Science, Vol.43, No.6, p.2874,
December 1996

. M.N.Liu et al., “Low power SEU immune CMOS memory circuits”, IEEE Trans. Nucl. Science, Vol.39, No.6, p.1679, December 1992
. J.Canaris, S.Whitaker, “Circuit techniques for the radiation environment of Space”, IEEE 1995 Custom Integrated Circuits Conference, p.77
. P.Eaton, D.Mavis et al., “Single Event Transient Pulsewidth Measurements Using a Variable Temporal Latch Technique”, IEEE Trans. Nucl.
Science, Vol.51, no.6, p.3365, December 2004
v On TMR and encoding:
o Paper comparing technigues and containing references, to be used as a starting research point: S.Niranjan, J.F.Frenzel, “A
comparison of Fault-Tolerant State Machine Architectures for Space-Borne Electronics”, IEEE Trans. On Reliability, Vol.45, Nof,
p.109, March 1996
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