

Gamma-ray Large Area Space Telescope

Riccardo Rando

L'esperimento di Astrofisica GLAST – il Large Area Telescope

Scuola Nazionale "Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica e Applicazioni Spaziali" INFN Laboratori Nazionali di Legnaro 4-8 Aprile 2005

Outline

- Gamma astrophysics: sources & detection
- Tracking telescopes
- LAT
- LAT subsystems (ACD,TKR,CAL)
- GLAST Trigger and Data Acquisition
- Status & conclusions

High Energy Astrophysics

- gamma rays: highly penetrating
- γ 's are not affected by the galactic magnetic field
- provide insight on the most energetic phenomena in the universe
- interface between cosmology and highenergy particle physics
- investigate the birth and evolution of the Universe
- requirements:
 - > reconstruct energy, direction
 - > timing informations
 - > reject (lots of) background events

AGN/PSR

- AGN: stellar-like engine, beamed emission of energy
- spectra: from radio to gamma
- different models for inner engine (leptonic, hadronic)
- broad energy coverage, sensitivity
- PSR: magnetized rotating neutron stars
- 30 pulsars known at gamma energies
- sensitivity and time response to identify the periodic signal
- different models describe emission of accelerated particles, *multiwavelength analysis* to discriminate by spectral analysis

GRB/CRs

- GRBs: gamma flashes, discovered in 1967
- BATSE measured 2704 GRBs in 9 years, isotropic distribution in the sky
- different spectral characteristics, time structure:
 1000 s down to sub-ms features
- model involves the collision of blobs of relativistic matter ejected from a central engine, *broad energy coverage* and *fast time response* are required
- CRs: known since 1912, Nobel prize (Hess) in 1936
- unknown origin (yet)
- 89% H, 10% He, 1% all heavier elements
- energies up to 10²⁰ ev at 250 km/h!)
- supernovae are candidate sites of CR acceleration
- observations of interactions of CR and ISM near a supernova remnant could settle the issue:

resolution

Detecting Cosmic Gamma Rays

- though gamma rays are penetrating, atmospheric integrated density is ~ 1 kg/cm²
- at higher energy (TeV) the whole atmosphere is the detecting medium (Cerenkov, ACT)
- at lower energies: balloons / satellites are required to avoid the atmospheric attenuation

Instruments

- scintillators (Csl, Nal, BGO, ...)
- Cerenkov counters
- collimators (as in X-ray telescopes) are not suitable
- early: active collimation, the active elements define a pointing direction with their arrangement
- currently: trackers (spark chambers, silicon), direction is reconstructed from secondaries

Photons are converted...

- above 20 MeV pair-production is by far the most probable interaction a photon will experience
- photons are converted into electron-positron pairs in the high-density layers within the tracker (every X_0 : prob 78%)
- e⁺/e⁻ are tracked (track recon, vertexing)
- γ direction is recovered
- tracker is used as a sampling calorimeter to measure energy loss in the converter foils

...and secondaries are scored

- in the remaining layers the electrons lose energy
- in the calorimeter an EM shower develops
- due to satellite constraints, a lot of energy will be lost! (calorimeter is small, made of non-adjacent blocks)
- complicated energy reconstruction procedures will be required:
 - loss from the back
 - loss from the sides
 - loss in gaps
 - loss in the TKR

CAL E losses

- longitudinal modelling: cone, saturating to a cylinder at shower maximum
- transverse modelling, function of Moliere radius
- if shower maximum is NOT contained shower longitudinal profile is fitted to reconstruct energy leaked from the bottom
- if shower maximum is contained the procedure is much easier: the number of escaping particles is proportional to the energy released in the last layer (8th)
- leakage from the edges depend on (reconstructed) angle and hit position
- → exceedingly complicated energy reconstruction algorithm!

LNL, 7 Apr. 2005

10

Last flown: Egret

- closely spaced spark chamber for tracking
- widely spaced spark chamber for TOF
- Nal(TI) calorimeter (7.7 X₀)
- plastic anticoincidence dome
- energy resolution ~10%
- angular res. 10° (60 MeV) to 1° (10 GeV)
- problems from backsplash from the CAL: the anticoincidence was too close
- map of the galactic background
- 3EG catalogue, 271 point sources (most blazars, 5 pulsars, 170 still unidentified)

GLAST

- Large Area Telescope: a silicon pair-conversion tracking telescope
- GLAST Burst Monitor: scintillating detectors
- Spacecraft

GBM

- 12 Low Energy Detectors (Nal, few keV to 1 MeV)
- 2 High Energy Detectors (BGO, 10 keV to 25 MeV)
- GBM covers the low energy end, overlapping with the LAT at high energy
- field of view ~ 8 srd
- time resolution 2 $\mu \text{s},$ GRB fast detection in ~2 s
- energy resolution 20% at 511 keV, 7% at 2 MeV

Parameter	GBM requirement	BATSE	
Energy range	8 keV - 1 MeV (LED)	10 keV - 1.8 MeV (LAD)	
	150 keV - 30 MeV (HED)	15 keV - >30 MeV (SD)	
Energy resolution	20% FWHM at 511 keV	~20% FWHM at 511 keV	
Time resolution	10 <i>µ</i> s	2 µs	
On-board GRB	20° accuracy (1 σ)	none	
locations	within 2 s		
Rapid ground GRB	5° accuracy (1 σ)	10° within 5 s	
locations	within 5 s	3° within 5 min	
GRB sensitivity	0.5 ph/(cm ² s) 0.1 ph/(cm ² s)		
	(peak flux, 50-300 keV)	(peak flux, 50 300 keV)	
Field of view	8 srad	4π srad	
Deadtime	<10	~10 µs/count	

LAT

- silicon tracker, W converter foils
- Csl calorimeter
- plastic ACD
- DAQ electronics
- modular design
- 4 towers, each with TKR, CAL
- segmented ACD

Quantity	LAT Spec.	EGRET	
Energy Range	20 MeV - 300 GeV	20 MeV - 30 GeV	
Peak Effective Area	> 8000 cm ²	1500 cm ²	
Field of View	> 2 sr	0.5 sr	
Angular Resolution (100 MeV)	< 3.5°	5.8°	
Angular Resolution (10 GeV)	< 0.15°		
Energy Resolution	< 10%	10%	
Dead Time	< 100 µs	100 ms	
Source Location Determination	< 0.5'	1.5'	
Point Source Sensitivity	$< 6 \times 10^{-9} \text{cm}^{-2} \text{s}^{-1}$	$\approx 10^{-7} \text{cm}^{-2} \text{s}^{-1}$	

CAL

Science drivers on design

On-board transient detection requirements, and on-board background rejection to meet telemetry requirements are relevant to the electronics, processing, flight software, and trigger design. **Instrument life** has an impact on detector technology choices (NO CONSUMABLES). Derived requirements (**source location determination** and **point source sensitivity**) are a result of the overall system performance.

15

AntiCoincidence Detector

- tiles of plastic scintillator, wavelength shifting fibers, photomultiplier tubes
- light-tight case for each tile to limit impact of micrometeorite damage
- power < 31 W
- reject charged particles (10⁵ more than γ 's)
- low energy photons from CAL (0.2÷2 MeV) give Compton signal comparable to a MIP
- 50% less $A_{\rm eff}$ in EGRET!! (at 10 GeV, with respect to 1 GeV)
- segmentation can associate this events to CAL backsplash and avoid self-vetoing (to less than 20% of "dangerous" events)

Tracker

- electronic modules tested at INFN Pi, assembles on two sides of tray (top/bottom)
- each tray is stacked on the others, rotated by 90 degrees
- a tower is composed by 19 trays, 12 with a thin W foil (0.03 X_0), 4 with a thick foil (0.18 X_0) and 3 w/o converter

Silicon detectors

- Hamamatsu: qualified producer for HEP experiments
- 11,500 SSD delivered (10,368 for assembly [83 m²] spares + wastage + prototypes)
- 885,000 channels!!!
- tested at HPK
- quality is so high that no search for bad strips is needed: only sum current is checked
- rejection rate at INFN lower than 0.6%
- after ladder assembly: loss rate ~2% (1% for mishandling), 0.03% bad strips

Parameter	Specification	
Thickness	400 µm	
Outer size	$8.95 \times 8.95 \text{ cm}^2$	
Active area	8.76×8.76 cm ²	
Strips per detector	384	
Strip pitch	228 µm	
R _{bias}	>20, <80 MΩ	
Cinterstrip at 150 V, 1 MHz	<1.5 pF/cm	
C _{coupling}	> 500 pF	
Depletion voltage	< 120 V	
Breakdown voltage	> 175 V	
I _{leak} at 200 V	< 600 nA	
Bad strips	<0.2%	

TKR electronics

- 1536 channels per tower plane: 24 FE ASICs with 64 strips each
- 2 Readout Controllers, one on each side, manage communications
- GTFE pads bonded to a pitch adapter and to the silicon sensors
- GTRC connected with a flex cable to the DAQ cable controllers on the Tower Electronics Module, below TKR
- registers hardened against SEU (Rockett, 1988)
- ASICs hardened against SEL (thin epi-layer)
- tests with heavy ions, gamma rays

GTFE structure

- low power cascode amplifier, 37 mV per MIP
- RC-CR shaper, 1.5 μ s
- single-threshold comparator
- a calibration capacitor allows for charge injection for testing
- all channels in a GTFE are OR-ed, OR is propagated to other GTFEs to generate a fast trigger request for an entire layer
- pulse height is not measured: it can be obtained measuring time-overthreshold
- low power (<250 µW per channel)
- low noise occupancy (<10⁻⁴ ch/trg)
- complete zero-suppression

TKR assembly

21

Tower!

Integration

- INFN Pisa receives TKR flight parts
- MCMs are tested, before and after being assembled in a TKR tray
- complete trays are tested
- trays are assembled in a stack configuration and a self-triggering data acquisition is performed
- flight trays are assembled into a tower!

23

TKR vibrational tests

- measure normal mode resonances of trays and full towers
- sweep: 5-2000 Hz, 0.15 g
- verify workmanship by exposing items to random vibrations (6.8 g rms) and then rechecking response
- look for lowest resonances
- differences after random vibration must be less than 3%
- no damages (cracks, delamination...)

Stack test

LNL, 7 Apr. 2005

25

TKR thermo-vacuum tests

- trays must withstand the thermal gradients with no loss in functional properties: test addressing, data taking, noise,....
- T from -30°C to +55°C
- change rate ±40°C/hr, 2.5 hrs at the extremes
- trays are tested in N atmosphere in an environmental chamber
- full towers are tested at the Alenia laboratories 🐨
- full "on-ground" DAQ setup
- vacuum: 10⁻⁵ torr
- 4 thermal cycles like specified above

Calorimeter

- hard constraints on mass (payload)
- power budget in the space telescope must be checked carefully
- 16 towers, 8 layers, 12 xtals per layer : 1536 crystals
- weight is 1500 kg, P < 91 W !
- self-triggering

CsI crystals

... and it's put in a safe.

... then a side is scratched ... (tapering)

- each XTAL: a Dual Diode Package at each side
- two PIN diodes: low/high energies, depending on the area
- XTAL wrapped in VM2000 reflective foil (2× increase in light collection)
- flex cables added, positioned in tray
- connected to electronics (FE)
- added TEM and connected

29

CAL electronics

CAL calibration & test

- 511 kev ²²Na source used as light source
- yield: >5000 e/MeV to be accepted
- beam test: muons
 - > 750 e/MeV from small diode
 - > 3000 e/MeV from large diode
- light tapering allows position reconstruction along crystal
- tapering: ~40% loss across XTAL length

DAQ system

• triggers the LAT, read out events, process them into the downlink stream.

• GLAST Global Trigger receives signals from the LAT electronics and creates trigger primitives: 3-in-a-row in the TKR (= 6-fold coincidence), ACD tile above threshold,...

- primitives are processed into high-level named primitives ("*3-in-a-row with CAL-HI*",...) used for L1T
- L1T: tower level, rate is 6 kHz (peak: 9 kHz)
- L2T: still tower level, loose cuts on background, 1 kHz (peak: 2 kHz)
- L3T: full instrument-wide reconstruction, should drop to 15 Hz
- OK for telemetry, but a significant background rejection still needs to be done on ground

32

Status

- TKR towers being assembled at the INFN labs in Pisa
- tests (DAQ, vibrational, thermo-vacuum)
- towers are sent to SLAC for Integration & Test
- tests with cosmic rays, Van de Graaff gamma's
- tray alignment is checked
- towers (TKR+CAL+DAQ) will be placed in the support grid, LAT assembled

Conclusions

- Astrophysics borrowed detector technology from high energy physics
- Si microstrip tracker, CsI EM calorimeter
- INFN: expertise in the field: design, assembly, test...
- Key aspects of LAT assembly are entrusted to industrial partners (quality control and certification, insurances, overtime fees, ...)
- Production has reached the stage of subsystem integration
- Test results validated key aspects of detector design
- Novel problems were encountered and solved
- Focus shifts on data analysis and science issues

Some spare slides...

TKR digital ASICs

- GTRC interfaces GTFEs and TEM
- The layer ID is set by 4 pads, it's hardcoded in the flex cable
- 2 registers regulate the operations:
 > REG: see right! 22 bits to store configuration, 6 error bits, 5 enable, 1 readonly
- SYNC: 8 bit, controls synchronization in communications with GTFEs
- Only the "CONF" 22 bits and the SYNC affect the ASIC functionalities
- 2 buffers to download data frames and store them
- TOT counter: time over threshold is ~ proportional to the injected charge

	GTRC Control Register Format					
	Bit	Name	Definition	Default		
	33	LD_FT	Enable loading FORCE and TOT			
	_		bits			
	32	LD_DELAY	Enable loading READ_DELAY			
	31	LD_STRETCH	Enable loading STRETCH			
	30	LD_CNT	Enable loading GTFE_CNT			
	29	LD_SIZE	Enable loading SIZE			
4	28	28 SUM_ERR Read only Logical OR of TAG,				
			TRIG, DAT and CMD errors			
			Cleared by reading Control Register			
	27	CMD_ERR	Read only Sum Cmd Parity Error			
			Set if there is a Cmd Parity Error			
			Clear by reading Control Register			
	26	DAT_ERR	Read only Sum Data Parity Error.			
			Set if there is a Data Parity Error			
			Cleared by reading Control Register			
	25	TRIG_ERR	Read only Sum Trigger Parity Error			
			Set if there is an LIT Parity Error			
	24	TAR IBB	Cleared by reading Control Register			
	24	TOK_ERR	Read only Sum Token Parity Error			
			Set if there is a Token Parity Error			
	22	TAC EDD	Cleared by reading Control Register			
	25	TAG_EKK	Read only Sum Tag Error			
			Set If there is a comparison faiture in			
			Cleared by reading Control register			
	22	STIET MODE	Paad only			
		SHIFT_MODE	Read only. Bonded pad to determine side			
Ĭ	21	TOT EN	1 => Enable TOT Delay	1		
	20	FORCE NO ERR	$0 \Rightarrow$ Normal operation	0		
		PORCE_NO_ERR	1 => Forces Normal Event readout	v		
	[1917]	READ DELAY	Delay from Read Event to start of	0		
	[hunte_bunnin	Read Command in 6.4us steps	Ŭ		
	[1612]	OR STRETCH[40]	Fast-OR Stretch in 50ns steps.	10		
	[]		0 => No Deglitch, No Stretch			
	[1107]	GTFE CNT	Number of GTFE chips to read	12		
	[0600]	SIZE	Number to set maximum number of	64		
			Hits from GTFE			

LET spectra and dose for GLAST

- GLAST orbital parameters:
 - > 565 km asl, circular orbit
 - > 28.5° inclination, ~1.6 hr orbital period
 - > 5 year mission
- CREME96 simulation gives LET spectra, integrated doses given magnetic cutoff, shielding,
- Biggest contribution to dose is passage into SAA
- Maximum total dose is 0.8
 krd in most exposed devices
 in a 5 year mission
- 5X engineering limit
- We added another 2X safety margin
- GCR+SPE < 0.3 ions/cm²

10 krd, 1 ion/cm² (5 years)

Rockett cell

38

Background

- γ / background events ratio is ~ 1:10⁵
- A rejection factor ~100 should be obtained on-board after L3T and OnboardFilter
- Another factor ~100 is required on ground to prepare dataset for science analysis
- This requirement was demonstrated with the tools available at the time of the AO / Flight Inv.
- Being carried on with the official LAT Software
- Standard path: investigate useful cuts on highly-discriminating variables:

Background rejection

- Current implementation uses *regression trees*, approach taken from soft sciences
- A training (simulated) data set is used to grow a predictor, recursively partitioning the data in categories (signal/noise, good/bad, ...) with cuts on the variables they contain in an automated way

• The predictor can then be applied to other data to classify them