Single Event Effects in SRAM based FPGAs

M. Ceschia1,2, M. Violante3, M. Sonza Reorda3, A. Paccagnella1,2, P. Bernardi3, M. Rebaudengo3, D. Bortolato1, M. Bellato2, P. Zambolin1, and A. Candelori2

1 DEI, Università di Padova, via Gradenigo 6a, 35131 Padova, Italy
2 Istituto Nazionale di Fisica Nucleare – Sez. Padova, via Marzolo 8, 35131 Padova, Italy
3 Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

This study was performed with the support of the Italian Space Agency (ASI)
Introduction

• New constraints ask for the adoption of SRAM-based devices in safety-/mission-critical applications:
 – Low cost
 – Fast and cheap prototyping
 – Reconfigurability

• High reliability levels are mandatory

• Reliability analysis should start from the early design phases
Reliability issue

• SRAM-based FPGAs are particularly sensible to Single Event Upsets (SEUs):
 – Modification of a memory bit (0 \Rightarrow 1, 1 \Rightarrow 0)
 – Produced by energetic heavy particles

• SEUs may hit:
 – User memory bits: transient effect
 – Configuration memory: permanent effect
Proposed approach

Device Characterization
- SRAM-based FPGA device
 - Radiation Testing
 - Device Cross Section

Circuit Analysis
- Register Transfer Model
 - Fault Injection
 - Circuit Error Rate

Circuit Cross Section
Experimental

- SRAM based device:
 - Xilinx Virtex XCV300PQ240-4 FPGA
- Radiation sources:
 - Heavy ions from Tandem accelerator, Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Padova, Italy
 - Linear Energy Transfer (LET) from 1.6 (88 MeV C ion) to 63 MeV/mg/cm² (256 MeV I ion)
Measured SEU/SEFI Cross Section

![Graph showing Measured SEU/SEFI Cross Section with different cross sections plotted against LET (MeV cm2 / mg). The graph includes lines and markers for Configuration memory cross section, C6288_4 SEFI cross section, and B14 SEFI cross section.]
SEU Cross Section per bit

Cross Section per bit [cm2/bit]

LET [MeV cm2/mg]

Device cross section per bit
LUT
IO
INTERCONNECT
INTERNAL_IC
Circuit Analysis

• Exploits simulation-based fault injection targeting:
 – Transient faults in user memory
 – Permanent faults in the configuration memory
• Works on Register Transfer descriptions
• Exploits a fault model that considers:
 – Faults in Configurable Logic Blocks (CLBs)
 – Faults in Routing resources
Fault model

RT-level behavioral model

Logic synthesis

Reference RT-level structural model

Place & Route

Reference Configuration memory

Faulty RT-level structural model

Faulty Configuration memory

Analysis

Fault injection

Compare

?
Virtex XCV300 TILE matrix
SEUs in the CLB bits

• Look Up Table defect
 – Change in the implemented logic function

• MUX defect
 – Change of the connections among LUTs, Flip-flops and outputs in the CLB

• Initialisation defect
 – Change of behaviour of the internal components of the CLB
SEUs in routing resources

• Open
• Bridge
• Input antenna
• Output antenna
• Conflict
• None
• Other
Fault free circuit
Bridge
Antenna

Net_1

Net_x_i

Net_x_o

Net_2

IN_0, IN_1, IN_2, IN_3, IN_4, IN_5, IN_6, IN_7, IN_8, IN_9, IN_10, IN_11

OUT_0, OUT_1, OUT_2, OUT_3, OUT_4, OUT_5, OUT_6, OUT_7
Frequency of SEFIs

<table>
<thead>
<tr>
<th></th>
<th>SEFIs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[#]</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>CLB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUT</td>
<td>36</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>MUX</td>
<td>54</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>Inizialization</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>108</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>Bridge</td>
<td>66</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Output Antenna</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Input Antenna</td>
<td>13</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>145</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>32</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>454</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Effective analysis of SRAM-based FPGA requires to consider faults in configuration memory
• Faults in configuration memory modify implemented circuit functionality
• New hybrid approach:
 – Radiation testing: performed once for each device, application-independent
 – Fault injection: application-dependent, exploits an ad-hoc fault simulator