

Applicazione di tre differenti tecnologie di rivelatori al silicio nell'Inner Tracking System di ALICE Rosario Turrisi

Sommario

Introduzione: ALICE a LHC • Struttura dell'ITS: Silicon Strip Detector Silicon Drift detector Silicon Pixel Detector Primi risultati del commissioning

ALICE: l'esperimento

- ALICE=A Large Ion Collider Experiment
- L'esperimento dedicato alla fisica degli ioni pesanti a LHC
- Scopo principale: studio della QCD mediante formazione di una (nuova) fase della materia, in condizioni estreme di densità M/E (QGP?)
 - importantissimo contributo degli "hard processes", in particolare della produzione di quark pesanti (c,b)

II QGP a LHC

- Condizioni estreme di densità di materia ed energia: PbPb@ 5.5×A TeV
- Stato della materia a 10⁻⁵ s dal Big Bang
 - Deconfinamento partoni
 - Ripristino simmetria chirale
 - Perdita di significato dei gradi di libertà adronici
- Compito dell'esperimento:
 - Rivelazione del nuovo stato (in condizioni "più ideali" rispetto a RHIC)
 - Studio delle sue proprietà
 - Prova dei meccanismi della QCD n.p.

Ruolo dei quark pesanti

- I processi 'duri': 98% della sezione d'urto a LHC
 - Possibile confronto con la teoria (QCD perturbativa)
 - verifiche fondamentali finestra per nuova fisica
 - Quark pesanti: sonde importanti <u>delle prime fasi</u> della reazione
 - Rivelabili mediante i decadimenti deboli: vertici separati dal vertice primario di ≈cτ≈100 µm

σ < 100 µm è l'obiettivo per la risoluzione su µ-vertici

Condizioni sperimentali

- Elevata molteplicità
- Ampio intervallo di energia
- Con l'esigenza di:
 - Elevata accettanza
 - Identificazione
 - Soglie di rivelazione "basse" (≈100 MeV)
 - Buona risoluzione in impulso: da 1-2% (≈ 1 GeV) a ≈10% (50 GeV e oltre)
 - Risoluzione sui (micro)vertici secondari

Tracciamento critico per la fisica e complessa sfida sperimentale !

Scenario "pessimistico": dN_{ch}/dy≈6-8×10³ (*best guess*=3000, estrapolando dai dati di RHIC)

Inner Tracking System (I)

- 6 strati, 3 tecnologie:
 - Silicon Pixels (0.2 m², 9.8 Mchannels)
 - Silicon Drift (1.3 m², **133 kchannels**)
 - Silicon Strip (4.9 m², **2.6 Mchannels, double-sided**)

Inner Tracking System (II)

- Design goals
 - Alta risoluzione per vertici e parametro d'impatto
 - minimizzare distanza del 1° layer
 - minimizzare material budget
 - Occupancy massima (PbPb centrali) < qualche %
 - dispositivi 2D in tutti layers
 - dE/dx nei 4 layer esterni per la PID

Layer	Det. Type	Radius (cm)	Length (cm)	Resolution (µm)		PbPb dN/dy=6000	
		• •	• •	rφ	Z	Part./cm ²	Occupancy (%)
1	SPD	3.9	28.2	12	100	35	2.1
2	SPD	7.6	28.2	12	100	12	0.6
3	SDD	15.0	44.4	35	25	3	2.5
4	SDD	23.9	59.4	35	25	1.5	1.0
5	SSD	38.0	86.2	20	830	0.6	4.0
6	SSD	43.0	97.8	20	830	0.45	3.3

SSD: struttura

- I due layer più esterni dell'ITS:
 - cruciali per la connessione delle tracce con la TPC
 - dE/dx per PID
- 1698 moduli doppia faccia (782+988)
- 72 ladders (34+38)
- cell size: 95×40000 μm²

Layer	Det.	Radius (cm)	Length (cm)	Resolution (µm)		PbPb dN/dy=6000	
1	Туре			rφ	Z	Part./cm ²	Occupancy (%)
5	SSD	38.0	86.2	20	830	0.6	4.0
6	SSD	43.0	97.8	20	830	0.45	3.3

z - overlap:

L5: 22 modules L6: 25 modules Struttura portante in materiale composito di carbonio (300 µm) Pitch dei moduli: 39.1 mm

Ladder,

top

Ladder, bottom

modulo SSD (ripiegato)

SSD: i moduli

- n-type silicon
- 300 µm thick
- area attiva: 75×42 mm
- double sided
- Stereo angle: 35 mrad
 - p: 7.5 mrad
 - n:27.5 mrad
- integrated AC decoupling

- cavi: Al su poliammide
- 6 FE×2 chips HAL25
- raffreddamento ad acqua

SSD: stereo angle

Stereo angle: 27.5 + 7.5 mrad

compromesso stereo/disambiguamento

SSD: Hal25 CHIP and µcable

E

CMOS .25 µm process, rad-hard mixed analogue/digital chip 128 input channels ±14 MIPs dynamics 1.4 ÷ 2.2 µs adjustable shaping time JTAG programmable powered @2.5 V nominal readout frequency: 10 MHz thinned down to ~150 µm

~4 mm

SSD: hybrid

SSD assembled

SDD: struttura

- I due layer intermedi dell'ITS:
 - buona granularità & dE/dx per PID
 - Connessione SSD-SPD, risoluzione in 'z'
- 260 moduli (84+176)
- 36 ladders (14+22)

Layer	Det. Type	Radius (cm)	Length (cm)	Resolution (µm)		PbPb dN/dy=6000	
	••			rφ	Z	Part./cm ²	Occupancy (%)
3	SDD	15.0	44.4	35	25	3	2.5
4	SDD	23.9	59.4	35	25	1.5	1.0

Sensore SDD

- n-type silicon
- 300 µm thick
- cathodes pitch: 120 µm
- anodes pitch: 294 µm
- drift cathodes width: 70 μm
- 2 lines of 33 charge injectors

SDD: moduli e ladders

Front-end electronics (4 pairs of ASICs) -> Amplifier, shaper, 10-bit ADC, 40 MHz sampling

SDD: dettagli assembly

SDD correction maps

- All the 260 SDD modules have undergone a complete characterization (map) before assembling in ladders
 - Charge injected with an infrared laser in > 100,000 known positions on the surface of the detector
 - For each laser shot, calculate residual between the reconstructed coordinate and the laser position along the drift direction
- Systematic deviations due to:

•

- Non-constant drift field due to non-linear voltage divider
- Parasitic electric fields due to inhomogeneities in dopant concentration

30

10

S 20

ode

along an O

5 -10

8-20

Non-linear volt. divider

300

200

100

0

-100

-200

SPD: struttura (1)

• I due layer interni dell'ITS:

- elevata risoluzione per vertici e parametro d'impatto: prevista una risoluzione di ~12 µm a 20 GeV (=asintotica)
- buona granularità
- 120 moduli (40+80)
- 10 settori
- cell size: 50×425 μm²

Layer	Det. Type	Radius (cm)	Length (cm)	Resolution (µm)		PbPb dN/dy=6000	
				rø	Z	Part./cm ²	Occupancy (%)
1	SPD	3.9	28.2	12	100	35	2.1
2	SPD	7.6	28.2	12	100	12	0.6

SPD Mounting

The 2 barrels will be built of 10 sectors

1,929

5

Material budget (each layer): $\approx 0.9\% X_0$ (Si ≈ 0.37 , cooling ≈ 0.3 , bus ≈ 0.17 , CFSS ≈ 0.1)

Half stave

- p-in-n-type silicon sensor
- 200 µm thick
- cell size: 50×425 µm²
- 5 readout chips 150 µm thick
- 40960 bump bonds

Pb-Sn Bump Bond

- Mixed signal (analogue, digital)
- Produced in a commercial 0.25µm CMOS process (8" wafers)
- Radiation tolerant design (enclosed gates, guard rings)
 - 8192 pixel cells
- 50 μ m (r ϕ) x 425 μ m (z) pixel cell
 - ~100 µW/channel
- ~1000 e⁻ mean threshold $(\sim 200 \text{ e}^{-} \text{RMS})$
 - ~120 e⁻ mean noise

13.5 mm

S

SPD: cooling

Requisiti:

- 1.5 kW potenza dissipata
- temperatura uniforme lungo lo stave
- sistema a prova di fughe
- T>T_{DEW}
- 'poca massa'

Sistema evaporativoCiclo di Joule-Thomson

SPD cooling performance

- Media ≈ 28 °C (25 da progetto)
- 108/120 moduli raffreddati
- upgrade in corso per 100% eff.

50.0

ITS commissioning

- Installazione completata in giugno 2007
- Run I: dicembre 2007
 - primo test di acquisizione
- Run II: feb/mar 2008
 - circa ½ dei moduli in acquisizione
 - primi muoni + run calibrazione
- Installazione dei servizi completata in maggio 2008
- Run III: giugno-ottobre 2008
 - run specifici per sub-detector commissioning
 - primo run con FASTOR trigger da SPD

Commissioning SPD

- 106/120 modules stably running
 - Dead+noisy pixels < 0.15%
 - Typical threshold \approx 2800e-
 - Operating temperature ≈ design value
 - Average leakage current @ ≤50V ≈ 5.8 μA
 - Average Bus current (\approx 4.4 A)
 - Detector readout time: \approx 320 µs

- Detector dead time:
 - 0 up to \approx 3kHz (multi-event buffering)
 - \approx 320 µs at 40 MHz trigger rate
 - Max readout rate (100% dead time): ≈ 3.3 kHz
- FastOr trigger with \approx 800 ns latency

Commissioning SDD

- 247 out of 260 modules in DAQ
- Calibration quantities monitored every ≈ 24 h
 - Fraction of **bad anodes** $\approx 2\%$
 - **<Noise>** \approx 2.5 ADC counts
 - Signal for a MIP on anodes $\approx 100 \text{ ADC}$
 - Drift speed from dedicated runs with charge injectors

Commissioning SSD

- 1477 out of 1698 modules in DAQ
- Fraction of bad strips $\approx 1.5 \%$
- Charge matching between p and n sides
 - Relative calibration from 40k cosmic clusters
 - Important to reduce noise and ghost clusters

Dati con FASTOR

FASTOR: 'OR' di <u>chip dell'SPD</u> implementato nel chip di FE ALICELHCB1

- Imposta coincidenza tra il semibarile superiore e quello inferiore dell'SPD (per z<0, cioè ½ barrel)
- Rate: 0.18 Hz
- Utilizzato l'ITS come tracciatore standalone:
 - fake vertex: incrocio di 2 tracklets costruite con SPD
 - ricerca di 2 tracce 'back-to-back' a partire da questo vertice

Dati da muoni cosmici

- Statistica: 10⁵ eventi
- Scopi principali:
 - allineamento dei singoli moduli con precisione migliore della risoluzione in posizione
 - FONDAMENTALE per ottenere una buona risoluzione su parametro d'impatto e microvertici
 - calibrazione del dE/dx per SDD/SSD

'Allineamento'

Adottati 2 metodi per la correzione dei disallineamenti dei 2198 moduli dell'ITS:

•

- Millepede (il default per LHC): determina tutti i parametri simultaneamente minimizzando un χ^2 globale calcolato dai residui traccia-punto di un gran numero di tracce
- Metodo iterativo: considera un modulo per volta calcolando i residui per quel modulo con tutte le tracce che lo attraversano (e determinate con gli altri moduli)

Millepede su SPD

Millepede su SDD

 Esempio di interazione calibrazione-allineamento: TimeZero e velocità di drift inclusi come parametri liberi in Millepede
Risoluzione dominata dal jitter del trigger (4 time bins @ 10 MHz)

dE/dx

• SDD

- A grandi distanze di drift si ha maggior diffusione code più ampie 'tagliate' dalla zero-suppression
 - riprodotto da MC

• SSD

- Tracce ricostruite in TPC + ITS (campo m. on)
- MPV=most probable value (per silicio spesso 300 µm)

ITS role in ALICE physics (I)

• Tracking:

- Prolong tracks reconstructed in the TPC
 - Improve momentum and angle resolution
 - Track impact parameter crucial for heavy flavours
- Standalone ITS tracking
 - Track and identify particles missed by TPC due to dead zones between sectors, decays and $p_{\rm T}\,cut\text{-off}$
 - p_T resolution < $\approx 6\%$ for a pion in p_T range 200-800 MeV

ITS role in ALICE physics (II)

Vertexing

- Reconstruction of primary (interaction) vertex
 - From tracks: ITS crucial to obtain resolution better than 100 μm
 - From SPD tracklets: done before tracking and used as a starting point (seed) in the tracking phase. Allows for pileup tagging based on multiple vertices
- Identification of secondary vertices from decays of hyperons and open charm and beauty hadrons

ITS role in ALICE physics (III)

- Charged particle pseudorapidity distributions from SPD
 - Pairs of clusters, one per SPD layer, aligned to the main interaction vertex ("tracklets")
 - Advantages (wrt dN/dη from tracks):

•

- Larger η and p_T acceptance
- Less stringent calibration needs
 - Suitable for the very first data

> First measurement that ALICE will be able to perform, both in p-p and Pb-Pb

7-track event collected with circulating LHC beam2 on Sept. 11th 2008