L'esperimento PAMELA: un apparato su satellite per lo studio della radiazione cosmica

Valter Bonvicini INFN – Trieste

Scuola Nazionale "Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica, Applicazioni Spaziali e Fisica Medica" INFN – Laboratori Nazionali di Legnaro, 20 – 24 aprile 2009

OUTLINE:

- 1. Scientific goals of PAMELA
- 2. The PAMELA instrument
 - 3. Principle of operation
- 4. Orbital environment and in-flight performance
- 5. Some results (antiproton and positron fractions)

6. Conclusions

The PAMELA Collaboration

PAMELA scientific objectives

(A Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) PAMELA design performance

- Study antiparticles in cosmic rays
- Search for antimatter
- Search for dark matter
- Study cosmic-ray propagation
- Study solar physics and solar modulation
- Study the electron spectrum (local sources?)

PAMELA scientific objectives

(A Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics)

PAMELA design performance

		energy range	particles in 3 years
•	Antiprotons	80 MeV - 190 GeV	O(10 ⁴)
•	Positrons	50 MeV - 270 GeV	O(10 ⁵)
•	Electrons	up to 400 GeV	O(10 ⁶)
•	Protons	up to 700 GeV	O(10 ⁸)
•	Electrons+positrons	up to 2 TeV (from calorimete	er)
•	Light Nuclei	up to 200 GeV/n He/Be/C:	O(10 ^{7/4/5})
•	AntiNuclei search	sensitivity of 3x10 ⁻⁸ in He/He	e

Cosmic-ray Antimatter from Dark Matter annihilation

Annihilation of relic Weakly Interacting Massive Particles (WIMPs) gravitationally confined in the galactic halo

- Distortion of antiproton and positron spectra from purely secondary production
 - A plausible dark matter candidate is neutralino (χ) , the lightest SUSY Particle (LSP).

Most likely processes:

- $\chi\chi \rightarrow qq \rightarrow hadrons \rightarrow anti-p, e^+,...$
- $\chi\chi \rightarrow W^+W^-, Z^0Z^0, \dots \rightarrow e^+, \dots$
 - \Rightarrow positron peak E(e+) ~ M $\chi/2$
 - \Rightarrow positron continuum E(e+) ~ M χ /20
- Another possible candidate is the lightest Kaluza-Klein Particle (LKP): B⁽¹⁾

Fermionic final states no longer suppressed: • $B^{(1)}B^{(1)} \rightarrow e^+e^$ direct decay \Rightarrow positron peak $E(e_+) \sim M_{B(1)}$

PAMELA prehistory

- Balloon-borne experiments: MASS-89/91, TS-93 and CAPRICE-94/97/98
- Space experiments*: NINA-1,2 SILEYE-1,2,3 and ALTEA (*study of low energy nuclei and space radiation environment)

PAMELA history

- 1996: PAMELA proposal
- 22/12/1998: agreement between RSA (Russian Space Agency) and INFN to build and launch PAMELA.
 - Three models required by the RSA:
 - Mass-Dimensional and Thermal Model (MDTM)
 - Technological Model (TM)
 - Flight Model (FM)
 - ⇒ Start of PAMELA construction
- 2001: change of the satellite ⇒ complete redesign of mechanics!
- 2006: flight!!!

The PAMELA instrument

Time-of-flight

- Trigger / Albedo rejection / Particle identification (up to 1 GeV/c) / dE/dx
- 3 double-layer scintillator paddles
- Timing resolution:
 - σ (paddle) \approx 110 ps
 - $\sigma(\text{ToF}) \approx 330 \text{ ps} (\text{MIPs})$

Si Tracker + magnet

- Measures rigidity
- 5 Nd-B-Fe modules (0.43T)
- 6 planes of double-sided Si microstrip detectors
- ~3 μm resolution (bending view) demonstrated, ie: MDR \approx 1 TV/c

Shower-tail catcher (S4)

- Plastic scintillator paddle, 1 cm thick
- Main task: ND trigger

21.5 cm²sr

Anticoincidence system

- Rejection of events with particles interacting with the apparatus
- Plastic scintillator paddles
- MIP efficiency > 99.9%

Mass: 470 kg Power: ~ 360 W Size: 130x70x70 cm³

Si-W Imaging Calorimeter

- Lepton/hadron discrimination
- e^{+/-} energy measurement
- 44 Si planes (x/y) + 22 W layers
- 16.3 X₀/0.6 λ₁
- p rejection factor ~ 10⁵
- e rejection factor > 10⁴

Neutron detector

- 36 ³He counters
- e/h discrimination at high energies

The time-of-flight system

- Main tasks:
- First-level trigger
- Albedo rejection
- dE/dx (ionisation losses)
- Time of flight particle identification (<1GeV/c)
- Characteristics:
- 3 double-layer scintillator paddles
- x/y segmentation
- Total: 48 channels
- Performance:
 - σ (paddle) ~ 110ps
- σ (ToF) ~ 330ps (for MIPs)

•

•

The anticounter system

- Rejection of events with particles
 interacting with the apparatus (off-line and
 second-level trigger)
- Characteristics:
- Plastic scintillator paddles, 8mm thick
- 4 upper (CARD), 1 top (CAT), 4 side (CAS)
- Performance:
- MIP efficiency > 99.9%

22 aprile 2009

Neutron detector

- Main tasks:
- e/h discrimination at high energy
- Characteristics:
- 36 ³He counters:
 - ³He(n,p)T Ep=780 keV
- 1cm thick polyethylene + Cd moderators
- n collected within 200 μs time-window

Main tasks:

• Neutron detector trigger

Characteristics:

Plastic scintillator paddle, 1 cm thick

Shower-tail catcher

22 aprile 2009

The magnet

- Characteristics:
- 5 modules of permanent magnet (Nd-B-Fe alloy) in aluminum mechanics
- Cavity dimensions (162 x 132 x 445) cm³
 - \rightarrow GF ~ 21.5 cm²sr
- Magnetic shields
- 5mm-step field-map on ground:
 - B=0.43 T (average along axis),
 - B=0.48 T (@center)

22 aprile 2009

The tracking system - 1

- Main tasks:
- Rigidity measurement
- Sign of electric charge
- dE/dx (ionisation loss)

Characteristics:

- 6 planes double-sided (x&y view) microstrip Si sensors
- 36864 channels
- Dynamic range: 10 MIP
- Performance:
- Spatial resol.: 3-4 μm (bending view)
- MDR ~ 1 TV (from test beam data)

The tracking system - 2

6 detector planes, each composed by 3 ladders <u>Mechanical assembly</u>

- aluminum frames
- carbon fibers stiffeners glued laterally to the ladders
- no material above/below the plane
 - 1 plane = 0.3% $X_0 \Rightarrow$ reduced multiple scattering
- elastic + rigid gluing

Test of plane lodging inside the magnet

The tracking system - 3

В

► X

Ladder structure:

- 2 microstrip silicon detectors
- 1 "hybrid" with front-end electronics

Silicon detectors (Hamamatsu):

- 300 μ m, double sided x & y view
- AC coupled (no external chips)
- Double metal (ohmic side)

Front-end electronics (VA-1):

- 16 chip/ladder → 288 chips
- 1.2 µm CMOS ASIC (Ideas, Norway)
- 128 low-noise charge preamplifier/shaper channels, shaping time 1 µs)
- Voltage gain 7.0 mV/fC → range 10 MIP

ADC:

- 1 ADC/ladder → 36 ADCs
- event acquisition time 2.1 ms

DSP:

• 1 DSP/view (ADSP2187L) → 12 DSPs

)

INFN

control logic on FPGA chips (A54SX)

Scuola Nazionale INFN-LNL, Legnaro (PD)

The Imaging Calorimeter - 1

- Main tasks:
- lepton/hadron discrimination
- e+/- energy measurement

Characteristics:

- 22 W plates (2.6 mm / 0.74 X₀)
- 44 Si layers (X-Y), 380 µm thick
- Total depth: 16.3 X₀ / 0.6 λ₁
- 4224 channels
- Self-triggering mode option
 (> 300 GeV; GF ~ 600 cm² sr)
- Mass: 110 kg
- Power Consumption: 48 W

Design performance:

- p,e⁺ selection efficiency ~ 90%
- p rejection factor ~ 10 ⁵
- e rejection factor > 10⁴
- Energy resolution ~ 5% @ 200 GeV

The Imaging Calorimeter - 2

44 Si detector views (22X and 22Y)

- 8x8 cm² detectors arranged in a
 3x3 matrix
- 32 strips/detector, 2.4 mm pitch
- Strips of detectors in the same row (column) are bonded together (ladder) ⇒ 24 cm long strips
- Each ladder (32 channels) is read out by 2 CR1.4P front-end chips
 ⇒ 6 front-end chips/view
- In total:
 - 396 silicon detectors
 - 264 CR1.4P chips
 - 4224 channels

The Imaging Calorimeter - 3

Architecture of one channel of the CR1.4P

- Front-end ⇒ CR1.4P ASIC (full custom design) Design characteristics:
 - 16 channels/chip
 - channel structure: CSA, shaper, T/H, out. mux.
 - input-selectable calibration circuit
 - integrated self-trigger circuit
 - shaping time = 1 μ s
 - sensitivity = 5 mV/MIP
 - wide dynamic range: 7.1 pC = 1400 MIP (1 MIP = 4.9 fC)
 - ENC ≈ 2700 e⁻ rms + 5 e⁻ /pF
- <u>ADC:</u>
 - 1 16-bit ADC/view \Rightarrow 44 ADCs (AD977A)
 - total calorimeter proc. time ~ 700 μs
- <u>Readout:</u>
 - Calorimeter divided into 4 sections:
 Odd_X, Odd_Y, Even_X, Even_Y
 - 1 DSP/section (ADSP2187) \Rightarrow 4 DSPs
 - on-line calibration
 - data compression
 - 1 FPGA/section (A54SX72) \Rightarrow 4 FPGAs

Satellite and space environment

- Large mechanical loads during launch phase
 ⇒ random vibrations (all axis) 7.4 g rms, SRS (Shock Response Spectrum) -all axis- up to 400 g
- Low mass budget
- Thermal variations (5 40 °C in normal operations)
- Low power budget (⇒ small power consumption)
- Redundancy and safety (accurate design, no SPF)
- Protection against highly ionizing events (SEU and SEL)
- EMI/EMC issues
- Limited telemetry

PAMELA models

Mass/Thermal Model (MDTM):

- \Rightarrow Full cycle of vibration/shock
- \Rightarrow Thermal tests
- \Rightarrow Dimensional/transp. tests

Technological Model (TM):

- \Rightarrow Preliminary acceptance tests
- \Rightarrow Power on/off,telecommands
- \Rightarrow Data transmission to VRL
- \Rightarrow EMI/EMC tests

Flight Model (FM):

- \Rightarrow Beam tests;
- \Rightarrow Integration in the satellite
- \Rightarrow Pre-flight tests
- \Rightarrow Launch

22 aprile 2009

Mechanical tests

The PAMELA MDTM during the vibration and shock tests at IABG mbH (Munich), August 2002

Thermal tests

Results of the PAMELA thermal qualification tests, April 2003. Temperatures in different subsystems are shown during the execution of 6 different thermal modes.

The Resurs-DK1 satellite

- Main task: multi-spectral remote sensing of earth's surface
- Built by TsSKB Progress in Samara, Russia (as well as the Soyuz-TM launcher)
- Lifetime >3 years (assisted)
- Data transmitted to ground via high-speed radio downlink
- PAMELA mounted inside a pressurized container

Mass: 6.7 tonnes Height: 7.4 m Solar array area: 36 m²

The Resurs-DK1 satellite

PAMELA INTEGRATION in the RESURS-DK1 satellite

nale INFN-LNL, Legnaro (PD)

PAMELA INTEGRATION in the RESURS-DK1 satellite

le INFN-LNL, Legnaro (PD)

PAMELA milestones

Launch from Baikonur → June 15th 2006, 0800 UTC.

'First light' → June 21st 2006, 0300 UTC.

Detectors operated as expected after launchDifferent trigger and hardware configurations evaluated

⇒PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

Main antenna in NTsOMZ

Trigger rate* ~25Hz Fraction of live time* ~ 75% Event size (compressed mode) ~ 5kB 25 Hz x 5 kB/ev \rightarrow ~ 10 GB/day (*outside radiation belts) As of ~ now: ~ 1000 days of data taking ~ 13 TByte of raw data downlinked > 10⁹ triggers recorded and analysed (Data from April to December 2008 under analysis)

Orbit characteristics

- Quasi-polar (70.4°)
- Elliptical (350 610 km)
- PAMELA traverses the South Atlantic Anomaly
- At the South Pole PAMELA crosses the outer (electron) Van Allen belt
- Quasi-polar orbit allows to study also low-energy cosmic rays (R > 100 MV)

Downlink station

- Main downlink station: Research Centre for Earth Operative Monitoring 'NtsOMZ', Moscow, Russia.
- Science data stored in PAMELA mass-memory (2 GB)
- Transferred PAMELA to satellite 7-8 times/day \rightarrow 14-16 GB
- Downlinked to ground in 2-3 sessions/day
 - Bit Error Rate <10⁻⁹
- Command uplinks are possible
- 'Real time' Quicklook at NtsOMZ
- Data distributed to MePHI (Moscow Engineering and Physics Institute) and then to CNAF, Bologna via GridFTP for reduction and calibration, and distribution to Institutes

Operational experience

• System is very stable, examples:

- Remote monitoring via web-based Quicklook
- Relatively few up-link interventions have been necessary
- Approximately 1 alarm per day. Usually anomalous electronics conditions. Weak correlation to SAA, radiation belts.
- The majority of alarms are handled automatically by hardware resets. < 1 per month require power cycling.

Trigger rate

Calibration @ ascending node

High-energy antiproton analysis

- Analyzed data July 2006 March 2008 (~550 days)
- Collected triggers ~10⁸
- Identified ~ 10⁷ protons and ~ 10³ antiprotons between 1.5 and 100 GeV (100 p- bar above 20GeV)
- Antiproton/proton identification:
 - rigidity (R) \rightarrow SPE
 - |Z|=1 (dE/dx vs R) \rightarrow SPE&ToF
 - b vs R consistent with $M_p \rightarrow ToF$
 - p-bar/p separation (charge sign) \rightarrow SPE
 - p-bar/e⁻ (and p/e⁺) separation \rightarrow CALO
- Dominant background at high energies \rightarrow **spillover protons**:

• finite deflection resolution of the SPE \Rightarrow wrong assignment of charge-sign @ high energy

\rightarrow Required strong SPE selection

Pre-PAMELA antiproton-to-proton ratio

Pre-PAMELA antiproton-to-proton ratio

PRL 102, (2009) 051101, Astro-ph 0810.4994

Antiproton-to-proton ratio Secondary Production Models

High-energy positron analysis

- Analyzed data July 2006 March 2008 (~550 days)
- Collected triggers $\sim 10^8$
- Identified ~ 150.10³ electrons and ~ 9.10³ positrons between 1.5 and 100 GeV (180 positrons above 20GeV)
- Electron/positron identification:
 - rigidity (R) \rightarrow SPE
 - $|Z| = 1 (dE/dx = MIP) \rightarrow SPE\&ToF$
 - $\beta = 1 \rightarrow \text{ToF}$
 - e^{-}/e^{+} separation (charge sign) \rightarrow SPE
 - e^+/p (and e^-/p -bar) separation \rightarrow CALO
- Dominant background → interacting protons:
 - fluctuations in hadronic shower development $\Rightarrow \pi_0 \rightarrow \gamma \gamma$ might mimic pure em showers
 - proton spectrum harder than positron $\Rightarrow p/e^+$ increase for increasing energy (10³ @1GV 10⁴ @100GV)

\Rightarrow Required strong CALO selection

- Identification based on:
 - Shower topology (lateral and longitudinal profile, shower starting point)
 - Total detected energy (energy-rigidity match)
- Analysis key points:
 - Tuning/check of selection criteria with:
 - test-beam data
 - simulation
 - flight data \rightarrow dE/dx from SPE & neutron yield from ND
 - Selection of pure proton sample from flight data ("pre-sampler" method):
 - Background-suppression method
 - Background-estimation method

80 GV proton

Final results <u>DON'T MAKE USE</u> of test-beam and/or simulation calibrations. The measurement is based only on flight data with the <u>background-estimation</u> method

Rigidity: 20-30 GV

Rigidity: 20-30 GV

Fraction of charge released along the calorimeter track

Constraints on:

Energy-momentum

match

Shower starting-point

Rigidity: 20-30 GV

Pre-PAMELA positron fraction

Positron fraction

Positron fraction

Secondary Production Models

 $CR + ISM \rightarrow \pi^{\pm} + \dots \rightarrow \mu^{\pm} + \dots \rightarrow \mathbf{e}^{\pm} + \dots$ $CR + ISM \rightarrow \pi^{0} + \dots \rightarrow \gamma\gamma \rightarrow \mathbf{e}^{\pm}$

Possible primary positron sources

Dark Matter

- e⁺ yield depend on the dominant decay channel
 - \rightarrow LSPs seem <u>disfavored</u> due to suppression of e⁺e⁻ final states
 - → LKPs seem <u>favored</u> because can annihilate directly in e⁺e⁻

 Boost factor required to have a sizable e⁺ signal → NB: constraints from p-bar data!!

Possible primary positron sources

Astrophysical processes

Local pulsars are well-known sites of

e⁺e⁻ pair production:

→ they can individually and/or coherently contribute to the e⁺e⁻ galactic flux and explain the PAMELA e⁺ excess (both spectral feature and intensity)

 \rightarrow No fine tuning required

- → if one or few nearby pulsars dominate, anisotropy could be detected in the angular distribution
 - → possibility to discriminate between pulsar and DM origin of e⁺ excess

> 80 theoretical paper on Pamela data since our ArXiv publication!!!!!

Possible primary positron sources

PAMELA positron fraction alone insufficient to understand the origin of positron excess

Additional experimental data will be provided by PAMELA:

- e⁺ fraction @ higher energy (up to 300 GeV)
- individual e⁻ e⁺ spectra
- anisotropy (...maybe)
- high energy $e^+ + e^-$ spectrum (up to 2 TV)

Complementary information from:

- gamma rays
- neutrinos

Conclusions

- PAMELA has been in orbit and studying cosmic rays for almost three years
- PAMELA is the first space experiment which is measuring the <u>antiproton</u> and <u>positron</u> cosmic-ray components to the high energies (> 100GeV) with unprecedented statistical precision
 - search for evidence of DM candidates
 - "direct" measurement of particle acceleration in astrophysical sources (pulsars?)
- Antiproton-to-proton flux ratio (100 MeV 100 GeV) shows no significant deviations from secondary production expectations. Additional high energy data in preparation (up to ~150 GeV).
- High energy positron fraction (> 10 GeV) increases significantly (and unexpectedly!) with energy. Primary source?
 Data at higher energies will help to resolve origin of rise (spillover limit ~300 GeV).

Furthermore:

• **PAMELA** is providing high-precision measurements on low-mass elemental (and isotopical) spectra (study of particle origin and propagation in the interstellar medium)

- **PAMELA** is able to measure the high energy tail of solar particles.
- **PAMELA** is measuring composition and spectra of <u>trapped and re-entrant</u> <u>albedo particles</u> in the Earth magnetosphere

~ Spare slides ~

Why CR antimatter?

Preparation for the launch

Loading Operations in Samara (Russia)

onurTransportation by rail to test areaValter Bonvicini - Scuola Nazionale INFN-LNL, Legnaro (PD)

Baikonur March 30, 2006 Initial operations, stand-alone tests

ini - Scuola Nazionale INFN-LNL, Legnaro (PD)

Data acquisition details

- Trigger configurations (selected by S1 counting rate):
 - High-radiation environment
 - \Rightarrow (S21 OR S22) AND (S31 OR S32) + CALORIMETER
 - Low-radiation environment⇒ (S11 OR S12) AND (S21 OR S22) AND (S31 OR S32) + CALORIMETER
- NB:
 - High voltage to PMTs, etc. is not changed during passage through SAA and radiation belts, or solar particle events.
- Average trigger rate ~25Hz
- Fraction of live time ~ 75%
- Event size (compressed mode) ~ 5kB
 ⇒ 25 Hz x 5 kB/ev ~ 10 GB/day

Valter Bonvicini - Scuola Nazionale INFN-LNL, Legnaro (PD)

22 aprile 2009

Z measurement

Velocity measurement

Calorimeter in-flight performance - 2

22 aprile 2009

Calorimeter in-flight performance - 1

Calorimeter in-flight performance - 2

ND

ND

ND

High-energy antiproton analysis - 2

Event selected from 590 days of data

Basic requirements:

- Clean pattern inside the apparatus
 - single track inside TRK
 - no multiple hits in S1+S2
 - no activity in CARD+CAT

Minimal track requirements

- energy-dependent cut on track χ^2 (~95% efficiency)
- consistency among TRK, TOF and CAL spatial information
- Galactic particle
 - measured rigidity above geomagnetic cutoff
 - down-ward going particle (no albedo)

High-energy antiproton selection

High-energy antiproton selection

Energy-momentum match

Antiproton-to-proton ratio Secondary Production Models

Proton spillover background

Minimal track requirements

The "pre-sampler" method

Selection of a pure sample of protons from flight data

CALORIMETER: 22 W planes: 16.3 X₀

Proton background evaluation

Rigidity: 6.1-7.4 GV

0

Proton background estimation from data

Rigidity: 6.1-7.4 GV

Energy-momentum match
Starting point of shower

proton selection

positron selection

Valter Bonvicini - Scuola Nazionale INFN-LNL, Legnaro (PD)

INFN Istituto Naziona di Fisica Nuclea

NFN

EVALUATION OF PION CONTAMINATION FOR ANTIPROTONS

protons interacting in the material surrounding PAMELA can generate π^- which can mimic an antiproton

Extensive simulation (using GRID) Pions passing antiprotons selections

Figure 3.19. Selected flight (black) and simulated (red) negative pions.

Below 1 GV the pions can be recognized using time of flight and be compared with simulation. Above 1 GV the pion contamination is <u>extrapolated from simulation</u>.

Above 5 GV the contamination Is less than 1%.

Positron fraction

Secondary Production Models

Solar modulation

