Reconfigurable systems and software radio for space applications (Part 2)

Adelio Salsano

Nanometric technologies

Characteristics

- Minimum features \rightarrow < 50 nm
- + High velocity and ULSI integrazione
- exponential growth of error probability

Areas of interest

Space

UNIVERSITA' degli STUDI di ROM TOR VFRGATA

Autonics

$$\rightarrow$$
 SPIN-IN

Biotechnologis

Design of high dependability systems

- Specs of performances and reliability
- Working environment analysis
- Component choice with the alternative
 - Components not sensitive to faults (fault-avoidance) with higher costs and lower performances
 - or
 - –commercial components with redundancy COTS (faulttolerance)
- Design for testability
- Testing

Dependability

- Qualitative evaluation of the system capacity of correctly operate, i.e.,
 - Reliability
 - OAvailability
 - Safety
 - Maintenability
 - OTestability

Definitions

- Reliability \rightarrow R(t) : probability of correct operation of the system between 0 and t
- Safety → S(t): probability of no catastrophic faults between [0,t] (fail-safe)
- Availability → A(t): probability that the system is correctly working at t
- Maintainability
 → M(t) : probability that a faulty system is repaired in a slot time t

Fault - Error - Failure

 ◆ Fault → physical fault or bad working (hardware or software) of a component

Failure \rightarrow the component doesn't do its service

Self-checking Circuits/Systems

Circuits/Systems that automatically detect the presence of errors and, eventually, are able to correct
 Coded inputs and outputs
 In-code or out-of-code words

Example: Error Detecting And Correcting memories

Other definitions

A circuit/system is

- Self-Testing, if, for each fault of a given set, there is at least one in-code input that gives an out-of-code output
- Fault-Secure, if every in-code input can't give a wrong in- code output
- Totally Self-Checking if it is Self-Testing and Fault-Secure
- The circuit/system reach the Totally Self-Testing Goal if the first erroneous output after a fault is an out-of-code word

Diagnostics, design and repairing

- Fault detection starting from errors
- Design methodologies
 - Test of typical components under possible causes of fault
 - Models for simulation
 - Software techniques as fault injection or repetition of initial tests
 - Software tools
- Correction and/or tolerance methodologies
 - Roll back (software)
 - Reconfiguration

Testing

- Relevance of radiations \rightarrow Soft errors
- Infrastructures with sources, as ISIS for neutrons
- Italian projects
 - OPanarea, (instrumentation)
- Great Britain projects
 - OSPAESRANE:

Solutions for the Preservation of Aerospace Electronic Systems Reliability in the Atmospheric Neutron Environment

Reconfigurable structures

FPGA

Programmable coarser-grain structures →
 CPU, memories, DSP, interfaces

for

- EDAC
- Even on-line change of software

FPGA: Architecture

FPGA: Logic Element (Block)

System on Chip

Includes:

Features:

• Hardware:

Field Programmable Gate Array

• Software:

Controller, soft cores, etc.

• Memory:

Program and data storage

UNVERSITA' degi STUDI di ROMA T O R VERGATA

Scuola INFN 2009 – Legnaro – 23/4/2009

Single chip integrated system

Reliability of integrated circuits

Problems and solutions

Working environment

Ground

- High reliability systems are required in many areas: safety applications as biomedicine, avionics, etc.
- Advanced technologies imply a growing probability of faults (atmospheric neutrons, for instance)

Space

- High dependability circuits and systems needed
- Mechanical and thermal stresses
- Faults and soft errors caused by space radiations

Faults

- Temporary
 - Space:

Single Event Effects caused by ionizing radiations

- Ground:
- Stuck-at, bridging faults, etc.
- EMC Single Event Effect caused by atmospheric neutrons

• Space:

Total Ionization Dose (TID) can harm device characteristics

 Ground:
 Devices ageing can be faster for last generation technologies

Static redundancy

 Reliability of a system can be improved with redundant modules: general model implies the use of three identical modules and final voter

Triple modular Redundancy (TMR)

Static redundancy

Less redundancy :

OECC codes for memory blocks

OArithmetic Codes for DSP applications

OInstruction flow analysis for microprocessors

Dinamic Redundancy

Better redundancy schemes
 can be used for reconfigurable
 systems (FPGA)

Error Detection and Repair

Space computing systems

- Modularity: soft cores by IP
- Performances
- Reliability
- Availability
- Working time
- Software updating

Computing module

An Architecture for Reconfigurable Computing in Space

- Robert F. Hodson¹, Kevin Somervill¹, John Williams², Neil Bergman², Rob Jones³
- ¹NASA LaRC, ²University of Queensland, ³ASRC Aerospace

RSC Goals & Objectives

To develop the next generation high performance space-qualified computing system leveraging...

- Field Programmable Gate Arrays FPGAs
- Intellectual Property (IP)
 - Soft cores, processors
- COTS software architectures
 - Multi-processor
 - Specialized
- Meet Strategic Challenges
 - Reconfigurability
 - Modularity
- First step towards the next generation avionics suite

Why Reconfigurable Computing with Soft Cores & Custom Logic

- Soft cores readily available for rad-tolerant FPGAs
- Custom co-processors can improve performance on average by 5.8X
- Power consumption can also be reduced on average by 57%
- Reconfiguration allows many designs without hardware redesign reducing cost
- Making this approach competitive with current space computing systems

Scalable Architecture

Multiple interconnected general purpose processing nodes with optimized custom logic attached for special purpose processing.

Modular Technology

- Modules will be combined to build RSC systems
- Designs will be based on rugged small form factor modular stackable technology
 - Allows mixing and matching of appropriate modules to meet mission requirements
- Planned modules
 - Reconfigurable Processing Module (RPM)
 - Command/Control Module (CCM)
 - Network Module (NM)
 - O Power Module (PM)

Conclusions

Modular computing system COTS based (long time availability, costs and performances)
Development of parallel operating systems for module interconnession
Possible reuse on different hardware → IP availability

