Overview of FPGA activities in the European Space Agency

III National School: "Detectors and Electronics for High Energy Physics, Astrophysics, Space Applications and Medical Physics"

> David Merodio Codinachs Roland Weigand European Space Agency Microelectronics Section (TEC-EDM)

23th April 2009

Slide 1/43

Acknowledgments

- Thanks to all colleagues, specially
 - Christian Poivey
 - Fredrik Sturesson
 - Anastasia Pesce
 - Francisco Tortosa
 - Jorgen IIstad
 - Catherine Morlet

→And also to the authors of all the referenced material

Outline (1)

Introduction

- → FPGA Configuration types
- Architectural general overview
- Non Rad-Hard and Rad-Hard Reprogrammable FPGAs
- → Rad-Hard One Time Programmable (OTP) FPGAs
- → General Capacity overview
- SEE mitigation, in general and dedicated to SRAM FPGA
 - SEEs recapitulation
 - → SEEs in antifuse FPGAs
 - Triple Modular Redundancy (TMR) for flip-flops in ASIC designs
 - → Functional TMR (FTMR) and the Xilinx TMR tool (XTMR) for SRAM FPGA
 - Configuration memory scrubbing
 - → Reliability Oriented Place & Route algorithm (RoRA)
 - Block and device level redundancy
 - → Temporal Redundancy
 - SEEs in Rad-hard reconfigurable FPGA

Outline (2)

- Analysis of SEE, verification of mitigation methods
 - → Radiation testing: Heavy Ions, Protons, Neutrons
 - → Fault simulation and fault injection
 - → Functional an formal verification
 - → Analysis of circuit topology
- Selection of the appropriate mitigation strategy
- Reconfigurability
 - Motivation
 - → Basic requirements
 - → Examples:
 - » Software Defined Radio
 - » Generic Module Dynamic Reconfigurator

Conclusion

Are the current mitigation techniques needed in the future?

References

Slide 4/43

Talk Scope: Before starting

- The main ESA activity related to FPGAs is:
 - →<u>use them in the subsystems</u> with electronics

Image:Central Data Management Unit for ESA's scientific twin mission Herschel and Planck based on the 32-bit processor ERC-32.

SYSTEM UNIT SPECIFICATIONS

Physical and environmental

-	
Radiation tolerance:	30kRad
Mass:	13 kg
Dimensions:	base plate 230*280 mm, height 292 mm
Vibration and chock:	meets Ariane 5 launch requirements
Thermal environment:	-20 to +50 °C on base plate
Power I/F:	50V DC supply feeds each sub unit separately
Total power	in normal operation 28W

Smart-1 System Unit

23th April 2009

Slide 5/43

Subsystems with Electronics

- On Board Computer & Data Handling System
 - → Main set of electronics, vital for the S/C functioning
 - → On board computer
 - → Mass memory
 - → Remote Terminal Units
 - → Payload data processing computers
 - → Data interfaces
- AOCS Sensors and Actuators
 - → Quite complex sensors with internal electronics
 - → Star tracker has a LEON processor ...
 - → Other
- Payloads
 - → Many types of instrument electronics, Radars, Telecom, Cameras, payload control electronics,
- Telecommunications

23th April 2009

Slide 6/43

FPGA Introduction

- In the FPGA usage there are different aspects (not extensive list):
 - → Capacity and performance (frequency and power consumption)
 - » Related to the internal architecture and technology node used
 - → Radiation hardness
 - » Addressed at different levels:
 - Process
 - Transistor/ Standard Cell
 - Register Transfer (RTL)
 - System
 - → Reconfigurability
 - → Quality
 - → Others:
 - » ITAR (International Traffic in Arms Regulations)
 - The regulations are described in Title 22 (Foreign Relations), Chapter I (Department of State), Subchapter M of the Code of Federal Regulations.
 - » Cost

FPGA Configuration types

• The configuration of FPGAs are kept by:

Unprogrammed Antifu (Antifuse example) → Antifuse Via to Metal 4 T25JV04 W#47 HPO/VPD (OTP: One time Antifuse programmable) Metal 3 → SRAM (SRAM 6 transistor example) (Reprogrammable) Switch In Floating Gate → Flash-based (Reprogrammable) Sensing Switching Word ProASIC3/E Flash Based Switch [] Switch Out

Slide 8/43

FPGA Introduction: Architecture

Architectural features in FPGAs:

- Logic (LUTs, R/C-Cells, ...)
- Internal Memory
- PLLs/ DLLs
- Arithmetic/ DSP oriented:
 - → Carry chain logic
 - → Multipliers
 - Multiply And Accumulate (MAC) plus extra registers
- Embedded processors
- Interfacing
 - → High Speed Serial Links

23th April 2009

Slide 9/43

FPGA vendors overview

FPGA Commercial vendors

(*) One-time programmable

		Actel	Altera	Atmel	Lattice	Quick- logic	Xilinx	
"Architectural features"	PLD only activity?	Yes	Yes	No	Yes	Yes	Yes	
	SRAM-based	-	X	X	X	-	X	
	Antifuse	X	-	_	-	X	-	(*
	E2PROM/FLASH	X	-	-	X	-	-	
	Logic	X	X	X	X	X	X	
	DSP	Carry- Chain	DSP block	Carry- Chain	sysDSP		Xtreme	
	Embed. processing	Soft ARM*	Soft NIOS	Hard AVR*	Soft Cores	Soft Cores	Hard PPC	
	Mixed Signal	FUSION	-	-	ispPAC (PLD)	-	-	
	"Structural ASIC"	-	-	-	МАСО	-	-	

23th April 2009

Slide 10/43

Rad-Tolerant Reconfigurable FPGA

- 🔹 Xilinx Q-Pro family (SRAM-based) 🧹
 - » Virtex (V): XQRV300/600
 - » Virtex 2 (V2): XQR2V3000/6000
 - » Virtex 4 (V4): XQR4VLX200, XQR4VLX200, XQR4VSX255, XQR4VFX140
 - → Non-ITAR
 - → 0.22um (V), 0.15um (V2), 90nm technologies (V4)
 - Advanced architecture including embedded Hard IPs
 (depending on the family and device)
 - » DSP Slices/Multipliers; Ethernet MAC Blocks; HSSL
 - » PowerPC Processor Blocks
 - Radiation characteristics
 - » Configuration memory, BRAM and FFs are not rad-hard: mitigation techniques required
 - » TID: 100 Krad (V); 200 Krad (V2); 300 Krad (V4)
 - → Packages: CB228 ; CG717; CF1144/1140/1509

23th April 2009

Slide 11/43

Rad-Hard OTP FPGAs (antifuse)

- RTSX (RTSX32SU, RTSX72SU)
 - → Non-ITAR
 - → Rad Hardening techniques
 - » User FFs SEU hardened
 - » LET_{TH} in excess of 40 MeV-cm2/mg
 - → TID 100Krad; Packages: CQFP-84/208/256
- RTAX (RTAX250-4000S/SL)
 - → ITAR
 - Radiation characteristics
 - » User FFs SEU hardened
 - » LET_{TH} in excess of 37 MeV-cm2/mg
 - » Cross-section < 1E-9 cm2
 - » Embedded block RAM not rad-hard: Mitigation technique required
 - » TID 300 Krad

esa

→ Packages: CQFP-208/352, CCGA/LGA-624/1152, 1272

Microelectronics Section

I/O Structure

Slide 12/43

C-Coll

CRRCRC

Type 2 SuperCluster

CRCCRC

Type 1 SuperCluster

SuperClust

Rad-Hard Reconfigurable FPGA (II)

- The Xilinx SIRF Project [9] (SRAM-based)
 - → SIRF = Single-event effects Immune Reconfigurable FPGA
 - → Based on the Virtex5 architecture, implemented in 65 nm technology
 - Developed under US air force funding
 - → Subject to export regulations (ITAR)
 - → Packages FF665/1136/1738 (TBC)
- Flash based FPGA (Low Power)
 - → Actel Pro-ASIC [10]; Non-ITAR
 - → Radiation evaluation is ongoing
 - → ASIC-like SEE mitigation required
 - → Flash is reconfigurable
 - » A limited number of reconfiguration cycles
 - » No on-line reconfiguration (while circuit is operating)
 - → Packages CCGA/LGA-484, 896

23th April 2009

Slide 13/43

Rad-Hard Reconfigurable FPGA (III)

- The Atmel ATF280E [8]
 - → Non-ITAR (European)
 - → It has hardened
 - » Configuration memory
 - » User FFs
 - » User memory
 - → TID tested upto 300Krad
 - → Packages: CQFP-84/208/256
 - → Development of larger devices is planned in cooperation between:
 - » Atmel Aerospace
 - » Abound Logic (http://www.aboundlogic.com)
 - » CNES (French Space Agency)
 - » JAXXA (Japanese Space Agency)
 - » ESA (European Space Agency)

23th April 2009

Slide 14/43

Rad-Hard FPGA Capacity Overview

Single Event Effects, SEE (recapitulation)

- Single Event Latchup (SEL)
- Single Event Transients (SET)
 - → in clocks and resets
 - » Glitches on clocks \rightarrow change of state, functional fault
 - » Asynchronous resets are clock-like signals

Slide 16/43

- → Single Event Transients (SET) in combinatorial logic
 - » SEE glitches in combinatorial logic behave like cross-talk effects
 - » Causes SEU when arriving at flip-flop/memory D-input during clock edge
 - » Sensitivity increases with clock frequency
 - » Synchronous resets are (normal) combinatorial signals
- Single Event Upset (SEU) in Flip-Flops and SRAM
 - → SEE glitch inside the bistable feedback loop of storage point
 - \rightarrow Immediate bit flip $\rightarrow~$ loss of information, change of state, functional fault

SEEs in antifuse FPGAs (I)

- Actel Antifuse FPGAs (RTSX-SU and RTAX-S/SL families):
 - → Routing is done with antifuse (passive); no upset effect.
 - → DFFs, rad-hard at transistor level [22]:
 - » Simplified version of the non-hardened D FF:

CLK

CLK

- Internal memories are not "rad-hard":
 - » Mitigation techniques
 - at RTL level required (requirements-dependent)

Slide 17/43

SEEs in antifuse FPGAs (II)

- However, the overall radiation hardness of the DFFs has 2 components [3]:
 - → SEU in the D FFs:
 » radiation hardened
 → SET in the C-Cell:
 - » Causes SEU when arriving to the FF

(ACTEL DFF primitive equivalence)

SEEs in antifuse FPGAs (III)

• See report [3] for details on the radiation experiment:

Figure 16: LET vs. Cross Section: multiple frequencies, data pattern = checkerboard, 4F4L architecture

SEEs in non-hardened SRAM FPGA

Single Event Upsets (SEU) in configuration memory

- → In SRAM FPGA, the circuit "itself" is stored in a RAM. A bit flip can modify the circuit functionality – e.g.
 - » Modify a look-up-table (combinatorial function)
 - » Changing IO configuration (revert IO direction)
 - » Causing an open connection
 - » Causing a short circuit
- Single Event Functional Interrupt (SEFI)
 - → Defined in [2]: SEFI is an SEE that results in the interface of the normal operation of a complex digital circuit. SEFI is typically used to indicate a failure in a support circuit, such as:
 - » a region of configuration memory, or the entire configuration.
 - » loss of JTAG or configuration capability
 - » Clock generators
 - » JTAG functionality
 - » power on reset

Mitigation of SEU in User Logic

Standard synchronous RTL design

esa

TMR and single voters for flip-flops for hard-wired logic (ASIC)

Microelectronics Section

Functional TMR (FTMR) [4] for SRAM (reprogrammable) FPGA

23th April 2009

Slide 21/43

FTMR-XTMR

- FTMR is based on full triplication of the design and majority voting at all flip-flop inputs and/or outputs
 - → Tolerates single bit flips anywhere in user or configuration memory
 - » Bit flips are "voted" out in the next clock cycle
 - → Mitigated SET effects (glitches in clocks and combinatorial logic)
 - → The VHDL approach presented in [4] requires a special coding style, it is synthesis and P&R tool dependent and therefore difficult to use

23th April 2009

Slide 22/43

XTMR development by Xilinx has a very similar topology

- → Voters only in the feedback paths (counters, state machines)
 - » Bit flips are voter out in N clock cycles
 - (N = number of stages of linear data path)
 - » Less area and routing overhead
- → Implemented automatically by the TMRTool [5]
- Independent of HDL coding style and synthesis tool
- → Well integrated with the ISE tool chain
- → Also triples primary IO signals

Multiple SEU – Configuration Scrubbing

Multiple bit flips can be

- → Single bit flips (SEU), accumulated over time
- → A single particle flipping several bits (Multiple Bit Upset MBU)
- Neither XTMR nor FTMR tolerate multiple bit flips
 - → Refresh of configuration memory at regular intervals required
 - → Background configuration scrubbing by partial reconfiguration [8]
 - » Without stopping operation of the user design function
 - → Scrubbing protects against accumulated single bit flips, provided the scrubbing rate is several times faster than the statistical bit upset rate
 - → Requires an external rad-hard scrubbing controller
- Scrubbing does not protect against MBU
 - → MBU are rare in current technology
 - → MBU could become an issue in future technology generations
 - → MBU usually affects physically adjacent memory cells
 - → MBU mitigation requires in-depth knowledge of the chip topology

XTMR cross-section added value

- Data from []
- Device:
 - → XQR3V3000 Die size ~16x16 mm²

• Results:

- → 2 clock: XTMR not active
- → 3 clock: XTMR active

Clear added value when using XTMR BUT, is it enough?

Fig 6.5 Recorded cross sections for the modules FFT, FFmatrix, LUTmatrix and M18matrix plotted as a function of LET for the V2 design variant. Data are only shown for test runs with low flux.

23th April 2009 Slide 24/43

RoRA: Mitigation at Place and Route

- In spite of (X)TMR, single point failures (SPF) still exist
 - Optimization during layout leads to close-proximity implementation
 - » Flipping one bit may create a short between two voter domains
 - » Flipping one bit may change a constant (0 or 1) used in two domains

→ Malfunction in two domains at a time can not be voted out any more

- The Reliability oriented place & Route Algorithm (RoRA) [7]
 - → Disentangles the three voter domains
 - → Reduces the number of SPF (bits affecting several resources)
 - → Besides giving additional fault tolerance to (X)TMR designs, RoRA is applicable also to non- or partial-TMR designs

Protection of SRAM blocks (1)

EDAC = Error Detection And Correction

- Usually corrects single and detects multiple bit flips per memory word
- → Regular access required to preventing error accumulation (scrubbing)
- Control state machine required to rewrite corrected data
- → Impact on max. clock frequency (XOR tree)

Parity protection allows detection but no hardware correction

- → When redundant data is available elsewhere in the system
 - » Embedded cache memories (duplicates of external memory) \rightarrow LEON2-FT
 - » Duplicated memories (reload correct data from replica) \rightarrow LEON3-FT
- → On error: reload in by hardware state machine or software (reboot)

Proprietary solutions from FPGA vendors

- → ACTEL core generator [21]
 - » EDAC and scrubbing

→ XILINX XTMR [5]

» Triplication, voting and scrubbing

Slide 26/43

Protection of SRAM blocks (2)

- EDAC protected memory (Actel)
 - Scrubbing takes place only in idle mode (we, re = inactive)
 - → Required memory width
 - » 18-bit for data bits <= 12
 - » 36-bit for 12 < data bits <= 29
 - » 54-bit for 20 <data bits <= 47

edaci/edacii Block

Encoder

Decoder

Scrubbing

Control

wdata

rdata

B

Axcelerator

RAM

Block

waddr, raddr

we,re

- Scrubbing in background using spare port of dual-port memory
- → Triplication against configuration upset RAMB4 S# S16

Slide 27/43

23th April 2009

Timer

wdata

rdata

error flags

slowdown flag

waddr, raddr, we,re

Testing, error and optional ports

R

Other Mitigation Techniques (1)

- Block and device level redundancy [6]
 - → Implementation of each design is plain (non-voted)
 - Design/verification of plain blocks/devices does not require special tools
 - \rightarrow 2x1 implementation (\rightarrow error detection and restart)
 - \rightarrow 3x1 or 2x2 implementation (\rightarrow continue operation in case of fault)

Figure 4: Dual FPGAs implementation

Figure 5: Three FPGA Implementation

Other Mitigation Techniques (2)

- ... Block and device level redundancy
 - → Redundant blocks or devices must be re-synchronised
 - » Context copying when error in one instance is detected
 - » Reset system or restore context from snapshot stored at regular intervals
 - Device TMR overcomes shortage of gate resources and IO pins
 - → Device TMR also protects against SEFI
 - → Device TMR requires separate rad-hard voting and reconfiguration unit
 - → Also applied for non-FPGA COTS devices [11]
- Temporal redundancy
 - → Repeat processing two or more times and vote result
 - Employed for embedded microprocessors
- Partial (Selective) TMR [12]
 - Triple only the most sensitive parts of a system
 - → Trade fault tolerance against complexity, but difficult to validate
- Single instance and watchdog

SEEs in Rad-Hard SRAM FPGA

- FPGAs: all Atmel and future SIRF Xilinx
- Single Event Upset (SEU) in configuration memory
 - → No effect as the memory cells are radiation hardened A bit flip can NOT modify the circuit functionality – e.g.
 - » NO modification of look-up-tables (combinatorial function)
 - » NO changing of the IO configuration (revert IO direction))
 - » NO cause an open connection
 - » NO cause a short circuit
- Single Event Functional Interrupts (SEFI)
 - → Under study
- User D FFs
 - → No effect as they are radiation hardened
- Open points:
 - → Hard macros hardness: TBD
 - → Final radiation result: TBD

Should higher level mitigation techniques be applied?

Microelectronics Section

23th April 2009

Slide 30/43

Verification of fault-tolerant designs

- Verification has to answer three main questions
 - → Does the mitigation strategy provide adequate fault tolerance?
 - » Radiation testing, fault simulation and fault emulation
 - → Was the planned mitigation strategy properly implemented?
 - » Analysis of netlist and physical implementation (layout)
 - → Are we sure the TMR did not break the circuit function?
 - » Dedicated formal verification tools are required
- Standard verification methods and tools are not sufficient
 - Simulation of a TMR netlist "works" with a defect in one voter domain
 - → COTS formal verification tools are confused by TMR
 - → Structural verification of TMR ASIC designs: InFault [19]
 - → NASA/Mentor: Formal verification for TMR designs [1]
 - → STAR, the STatic AnalyzeR tool [20]
 - » Performs static analysis of a TMR circuit layout in SRAM FPGA
 - » Identifies critical configuration bits (single bit affecting two voter domains)

Radiation Testing

- There is nothing like real data to f' up a great theory
 Richard Katz, NASA Office of Logic Design, circa 1995
- Heavy lon Testing
 - → Using fission products (e.g. Californium 252) [13]
 - → Cyclotron, e.g. UCL [14]

- Other Radiation Testing
 - → Proton testing e.g. PSI [15]
 - Protons penetrate silicon \rightarrow backside irradiation, suitable for flip-chip
 - Neutron Testing, interesting for ground and aircraft applications

CSA Microelectronics Section

23th April 2009

Slide 32/43

FPGA radiation: RT ProASIC3

- A radiation test activity <u>has just started under ESA contract;</u> with a duration of 12 months
- Objective:
 - → Get further insight in the radiation sensitivity of RT ProASIC3 FPGAs by performing

» TID sensitiveness (currently published as 15 Krad for programming

- » Heavy ion SEE tests
- » Proton SEE tests
- » Co-60 TID tests

functionality)

- → Main concern of this FPGA are:
 - » SET sensitiveness

23th April 2009

Slide 33/43

Fault Simulation and Emulation

- Fault injection to user flip-flops (but not configuration memory)
 - → SST, an SEU simulation tool [16]
 - → FT-Unshades for user flip-flops and memory [17]
- Fault injection to configuration memory by FPGA emulation
 - → The FLIPPER test system [18]

Figure 13: Comparison between injection and radiation data for the FFmatrix module

Slide 34/43

Selection of a Mitigation Strategy

- SEE mitigation has area and performance overhead
- Trade-off between cost and fault tolerance
 - → Same hardening scheme for the complete design is easiest to implement
 - → Selective hardening of critical parts is often the only acceptable solution
 - Life time requirement of applications can be very different

Data Criticality Error Persistence		Low			High
		No	Yes		
O perating Window	Minutes	No Mitigation		TX	MR
	Days	Scrubbing	Scrub	bing	Red-
	Months		XTMR	IR	undant devices
	Continuous				

Slide 35/43

Reconfigurability: motivation

- Question: is reconfigurable/ adaptive hardware useful in Space?
 - → It enables resources usage optimization (HW resources time sharing)
 - → It enables adaption to miss-functions
 - → It gives flexibility to hardware:
 - » Same hardware reused for different applications
 - » Easier adaptation to different and/or new standards
 - → AND FOR MANY MORE REASONS, YES
- Current systems actually include reconfigurability:
 - → Software currently gives the "reconfigurability" to the systems
- The FPGAs to be potentially reconfigured in space shall fulfill the quality and radiation requirements
 - → When mitigation is required, reconfigurability shall be compatible with it
- FPGA currently used in the big majority of space designs:
 - → Antifuse; so no reprogrammable FPGAS

Reconfigurability: SDR

Example, Activity to be finished in 3Q09

→ Software Defined Radio (SDR):

» Processor Signal Processing Chain:

• Reconfigurability levels (possible classification):

→ Full reconfiguration:

» Full reconfiguration of the processor with new algorithms

→ Partial reconfiguration with new/upgrade algorithms:

» Only a portion of the design in the FPGA gets reconfigured

→ Parameters modification:

» Afects only the parameters (same as with SW)

→ Add-on algorithms:

» Adding one or more algorithms to the current chain.

Reconfigurability: GMDR (I)

FPGA Based Generic Module and Dynamic Reconfigurator: Activity Objectives:

- → Design, develop a payload data processing module demonstrator utilizing reprogrammable FPGAs as core data processing unit.
- → Allow for a range of data processing algorithms to be implemented to cover a wide range of applications.
- → Fault tolerant design
- → In-flight reconfigurable core of FPGAs
- → Focus on the SW Development Environment kit to exploit the unit's capabilities.
- Run Performance Benchmarks based on CCSDS Image compression standards
- Activity Start-up Q1 09
- Duration 24 Months

Slide 38/43

Reconfigurability: GMDR (II)

• FPGA Based Generic Module and Dynamic Reconfigurator:

Slide 39/43

Reconfigurability: future FPGAs

Reconfigurable FPGAs: either SRAM-based or Flash-based

• Current offer:

- → Rad-Hard SRAM-based:
 - » Atmel AT40K; small capacity
- → Rad-Tolerand SRAM-based:
 - » As it has been seen, big efforts required in order to mitigate against radiation
 - » Packaging offered are currently not qualified

→ Rad-Hard Flash-based:

» Mitigation techniques required; relatively less efforts that SRAM

• Future:

- High capacity Rad-Hard SRAM-FPGAs and Flash-based FPGAs
 - » Xilinx SIRF is ITAR

Question: Will the mitigation techniques be useful in the future?

23th April 2009

Slide 40/43

Rad-Hard FPGA Capacity Overview

Mitigation efforts at RTL level

Future High capacity Rad-Hard SRAM-based FPGAs

- → Will have lower level mitigation
- ◆ BUT
 - → Rad-Tolerand SRAM-based:
 - » Are currently not ITAR; so might be interesting for some applications

→ Rad-Hard Flash-based:

- » Mitigation techniques are anyhow required
- High capacity Rad-Hard SRAM-based FPGAs and Flash-based FPGAs
 - » To be further investigated the added value of extra higher-level mitigation techniques

Conclusion

ESA involved in FPGA device developments

→ FPGAs extensively used in space designs !!

- ESA involved in tools to verify the correct implementation of the mitigation techniques
 - Fault Injection Systems
 - » FLIPPER, FT-UNSHADES, SST (simulation)
 - Analytical
 - » InFault, STAR
- ESA involved in Radiation testing of FPGAs
- ESA involved in reconfigurability
 - Software defined Radio, Generic Module and Dynamic Reconfigurator
- Will the mitigation techniques be required in the future?
 - Non rad-hard SRAM based FPGAs might be used
 - → Flash-based will require mitigation techniques

Questions?

References/Links (1)

- [1] Melanie Berg: Design for Radiation Effects http://nepp.nasa.gov/mapId_2008/presentations/i/01%20-%20Berg_Melanie_mapId08_pres_1.pdf
- [2] Single-Event Upset Mitigation Selection Guide, Xilinx Application Note XAPP987 http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf
- [3] "RTAXS Field Programmable Gate Array Single Event Effects (SEE) High-Speed Test Plan Phase 1"; T110405_RTAX.pdf, available at http://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html
- [4] Sandi Habinc: Functional Triple Modular Redundancy (FTMR)

http://microelectronics.esa.int/techno/fpga_003_01-0-2.pdf

[5] The Xilinx TMRTool

http://www.xilinx.com/ise/optional_prod/tmrtool.htm

[6] Xilinx Application Notes concerning SEU mitigation in Virtex-II/Virtex-4

http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp779.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp988.pdf

[7] A new reliability-oriented place and route algorithm for SRAM-based FPGAs, Sterpone, Luca; Violante, Massimo;

IEEE Transactions on Computers, Volume 55, Issue 6, June 2006

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12&year=2006

[8] The Atmel ATF280E Advance Information

http://www.atmel.com/dyn/resources/prod_documents/doc7750.pdf

Slide 44/43

References/Links (2)

[9] The Xilinx SEU Immune Reconfigurable FPGA (SIRF) project http://klabs.org/mapId05/presento/176_bogrow_p.ppt [10] Actel Rad Tolerant ProASIC3 http://www.actel.com/products/milaero/rtpa3/default.aspx [11] Super Computer for Space (SCS750), Maxwell, ESCCON 2002 http://www.maxwell.com/microelectronics/support/presentations/ESCCON 2002.pdf [12] Selective Triple Modular Redundancy for SEU Mitigation in FPGAs, Praveen Kumar Samudrala, Jeremy Ramos, and Srinivas Katkoori http://www.klabs.org/richcontent/MAPLDCon03/abstracts/samudrala a.pdf [13] The CASE System, Californium 252 radiation facility at ESTEC https://escies.org/ReadArticle?docId=252 [14] PIF, the Proton Irradiation Facility at Paul Scherrer Institute, Switzerland http://pif.web.psi.ch/ [15] HIF, Heavy Ion Facility at University of Louvain-la-Neuve, Belgium http://www.cyc.ucl.ac.be/HIF/HIF.html [16] SST: The SEU Simulation Tool

http://microelectronics.esa.int/asic/SST-FunctionalDescription1-3.pdf http://www.nebrija.es/~jmaestro/esa/sst.htm

23th April 2009

Slide 45/43

References/Links (3)

[17] FT-Unshades, a Xilinx-based SEU emulator

http://microelectronics.esa.int/mpd2004/FT-UNSHADES_presentation_v2.pdf

[18] The FLIPPER SEU test system

http://microelectronics.esa.int/finalreport/Flipper_Executive_Summary.pdf

http://microelectronics.esa.int/techno/Flipper_ProductSheet.pdf

[19] Simon Schulz, Giovanni Beltrame, David Merodio Codinachs: Smart Behavioural Netlist Simulation for SEU Protection Verification

http://microelectronics.esa.int/papers/SimonSchulzInFault.pdf

[20] Static and Dynamic Analysis of SEU effects in SRAM-based FPGAs

L. Sterpone, M. Violante, European Test Symposium ETS2007

[21] Actel Core generator

http://www.actel.com/documents/EDAC_AN.pdf

[22] RTAX-S/SL Rad Tolerant FPGAs Datasheet

http://www.actel.com/documents/RTAXS_DS.pdf

References/Links (III)

[] RTAX-S/SL Rad Tolerant FPGAs Datasheet

David: Include link

[] "RTAXS Field Programmable Gate Array Single Event Effects (SEE) High-Speed Test Plan – Phase 1"; T110405_RTAX.pdf, available at http://radhome.gsfc.nasa.gov/radhome /RadDataBase/RadDataBase.html

Slide 47/43

Backup Slides

23th April 2009

Slide 48/43

Main FPGA vendors for space

Characteristics	FPGA Vendor				
Characteristics	XILINX (HQ: USA)	ACTEL (HQ: USA)	ATMEL (F) EU product !		
Reprogrammabi lity	Unlimited	One-time-programmable/ "limited" (Flash-based)	Unlimited		
Technology	SRAM-based, .35065µm/ 0.65µm	Anti-fuse (ONO and M2M), 0.8-0.15µm/ 0.13µm Flash	Hardened SRAM-based, .35, .18µm		
Radiation Hardness	No TID, SEL; configuration logic is SEU sensitive/ SIRF	No TID, SEL ; Rad-hard anti -fuse/ TID issue, ASIC-like SET, SEU	No TID, SEL ; Rad hardened SRAM, CMOS libraries		
Capacity (in ASIC equ. gates)	1Mgates 2-3Mgates (2007)	250Kgates / 600 Kgates (non- 500Kgates (2007) / mitigated)	40Kgates 280Kgates (4Q09)		
ITAR	No / Yes	Yes / No	No		
Weaknesses	more SEU sensitive (SRAM), Hardening by design at various levels needed / ITAR	Can be programmed only once, ITAR applies. / TID	only small ones available yet (40K gates), though new larger ones (280K) due 2009, New technology, not used yet		
Strengths	Unlimited reprogramability; Many functional macrocell options (DSP, mC, serdes), large size / + Rad-Hard	Rad hard, Higher level of space qualification / Reprogrammable	Unlimited reprogramability; Non ITAR, fabricated in EU; hardened SRAM, clock and reset		

23th April 2009

Slide 49/43

FPGA and ASIC trends

FPGA and ASIC trends

- SRAM-FPGAs go rad hard
- -> Xilinx US "SIRF programme" succeeds,
- -> 3rd generation of larger rad hard Atmel FPGAs

<u>SRAM- FPGA</u>:

reprogrammable, growing in capacity and rad hardness, less expensive, faster time to market than ASIC

Anti-fuse FPGA:

growing in capacity, less expensive, faster time to market than ASIC

ASIC: more functions in less area, always best performance, fewer numbers in favour of FPGAs and increasing developing times & costs

23th April 2009

Slide 50/43

C-Cell and R-Cell detail

Xilinx – Virtex-4 CLB

• Logic resources in One CLB (Configurable Logic Block):

- → 4 Slices
- → 8 4-input LUTs
- → 8 Flip-Flops
- → 8 MULT_ANDs
- → 2 Arithmetic and Carry Chains
- → 64 bits of Distributed RAM (SLICEM only)
- → 64 bits Shift Registers (SLICEM only)

23th April 2009

Slide 52/43

Microelectronics Section

Slide 53/43

ECSS-Q-60-02

Microelectronics Section

Slide 54/43

RTAX-S

• SEE frequency dependency [3]:

Figure 17: 4F4L Data Patterns at18.8 MHz and 150MHz

