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Outline (1)
¢ Introduction
- FPGA Configuration types
— Architectural general overview
- Non Rad-Hard and Rad-Hard Reprogrammable FPGAs
- Rad-Hard One Time Programmable (OTP) FPGAs
—> General Capacity overview

o SEE mitigation, in general and dedicated to SRAM FPGA
— SEEs recapitulation
- SEEs in antifuse FPGAs
= Triple Modular Redundancy (TMR) for flip-flops in ASIC designs
= Functional TMR (FTMR) and the Xilinx TMR tool (XTMR) for SRAM FPGA
— Configuration memory scrubbing
— Reliability Oriented Place & Route algorithm (RoRA)
— Block and device level redundancy
— Temporal Redundancy
— SEEs in Rad-hard reconfigurable FPGA
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Outline (2)

¢ Analysis of SEE, verification of mitigation methods
— Radiation testing: Heavy lons, Protons, Neutrons
= Fault simulation and fault injection
— Functional an formal verification
= Analysis of circuit topology

+ Selection of the appropriate mitigation strategy

¢ Reconfigurability
- Motivation
— Basic requirements
- Examples:
» Software Defined Radio
» Generic Module Dynamic Reconfigurator

¢ Conclusion
= Are the current mitigation techniques needed in the future?

¢ References
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Talk Scope: Before starting ....

SYSTEM UNIT SPECIFICATIONS

¢ The main ESA activity related to Physical and environmental
FPGAS iS.' Mass: 13 kg
Dimensions: base plate 230%280 mm,

height 292 mm

_)use them in the Su bSyStems Vibration and chock: meets Ariane 5 launch
requirements

With eleCtron iCS Thermal environment:  -20 to +50 °C on base

plate
Power I/F: 50V DC supply feeds
each sub unit separately
Total power
consumption: in normal operation 28W

Image:Central Data Managerment Unit for ESA s scientific twin
rmission Herschel and Planck based on the 32-bit processor
ERC-32. Smart-1 System Unit
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Subsystems with Electronics

¢ On Board Computer & Data Handling System
= Main set of electronics, vital for the S/C functioning
= On board computer
- Mass memory
— Remote Terminal Units FPGAs usage
— Payload data processing computers in “a l ”» Uun itS
— Data interfaces

¢ AOCS Sensors and Actuators
- Quite complex sensors with internal electronics
— Star tracker has a LEON processor ...
— Other

¢ Payloads

- Many types of instrument electronics, Radars, Telecom, Cameras,
payload control electronics,

¢ Telecommunications

-
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FPGA Introduction

¢ In the FPGA usage there are different aspects (not extensive list):
— Capacity and performance (frequency and power consumption)
» Related to the internal architecture and technology node used
— Radiation hardness
» Addressed at different levels:
+ Process
+ Transistor/ Standard Cell
+ Register Transfer (RTL)
¢ System
= Reconfigurability
- Quality
— Others:

» ITAR (International Traffic in Arms Regulations)
The regulations are described in Title 22 (Foreign Relations), Chapter |
(Department of State), Subchapter M of the Code of Federal Regulations.

» Cost
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FPGA Configuration types

¢ The configuration of FPGAs are kept by:

Unprogrammed Antifuse

i Antifu 1
~ Antifuse Wi
(OTP: One time anive— [
programmable)

- SRAM

(Reprogrammable) %?% 4@‘ i

T Floating Gate § Switch In

- Flash-based

(Reprogrammable) 1: T [ swicning

-

Word 1 ProASIC3/E Flash Based Switch []
® Switch Out
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FPGA Introduction: Architecture

Architectural features in FPGAsSs:

¢ Logic (LUTs, R/C-Cells, ...) “Glue Logic
¢ Internal Mem ory Basic System Blocks
¢ PLLs/DLLs (EEWR ML)
o Arithmetic/ DSP oriented:

- Carry chain logic

— Multipliers Platform System

-p Blocks
= Multiply And Accumulate (MAC)
plus extra registers (High Speed Serial Links,

¢ Embedded processors £ 70 L TERATITE

DSP...)

¢ Interfacing
- High Speed Serial Links
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FPGA vendors overview

¢ FPGA Commercial vendors

(*) One-time programmable

“Architectural features”

Actel Altera Atmel Lattice Quick- Xilinx
logic
- X X X - X
(*)
X - - X - -
X X X X X X
DSP block sysDSP Xtreme
Hard AVR* Hard PPC
FUSION - - ispPAC -
(PLD)
- - - MACO -

P
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Rad-Tolerant Reconfigurable FPGA

¢ Xilinx Q-Pro family (SRAM-based) (;E
» Virtex (V): XQRV300/600
» Virtex 2 (V2): XQR2V3000/6000

» Virtex 4 (V4): XQR4VLX200, XQR4VLX200, XQR4VSX255,
XQR4VFX140

= Non-ITAR
= 0.22um (V), 0.15um (V2), 90nm technologies (V4)
= Advanced architecture including embedded Hard IPs

(depending on the family and device)

» DSP Slices/Multipliers; Ethernet MAC Blocks; HSSL
» PowerPC Processor Blocks :
—> Radiation characteristics

» Configuration memory, BRAM and FFs are not
rad-hard: mitigation techniques required

o | Processor wit
g ko - 500 MHz
Ben= = XtremeDSP™ Slice | &

» TID: 100 Krad (V); 200 Krad (V2); 300 Krad (V4) = ety
— Packages: CB228 ; CG717; CF1144/1140/1509
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Rad-Hard OTP FPGAs (antifuse)

¢ RTSX (RTSX32SU, RTSX72SU) SXA el L.
— Non-ITAR =
— Rad Hardening techniques
» User FFs SEU hardened
» LET;y in excess of 40 MeV-cm2/mg
= TID 100Krad; Packages: CQFP-84/208/256

¢ RTAX (RTAX250-4000S/SL) F*T/}’(
- [TAR
— Radiation characteristics
» User FFs SEU hardened
» LET;y in excess of 37 MeV-cm2/mg
» Cross-section < 1E-9 cm2

» Embedded block RAM not rad-hard:
Mitigation technique required

» TID 300 Krad
— Packages: CQFP-208/352, CCGA/LGA-624/1152, 1272

i
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Internal Logic  cys cKp [ Al 1
ister 1 Cluster 2
Type 2

Cluster1  Cluster1  Cluster2  Cluster1
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Rad-Hard Reconfigurable FPGA (i)

¢ The Xilinx SIRF Project [9] (SRAM-based)

- SIRF = Single-event effects Inmune Reconfigurable FPGA
— Based on the Virtex5 architecture, implemented in 65 nm technology
- Developed under US air force funding

— Subject to export regulations (ITAR) ‘Clzzasenssessasensosssasassnosansanssosassaes [ ccc
- Packages FF665/1136/1738 (TBC)

— RAM Block
4,608-Bit Dual-Port
»| SRAM or FIFO Block

¢ Flash based FPGA (Low Power)

— Actel Pro-ASIC [10]; Non-ITAR e
ol User Nonvolatile Charae Pumms E gksgaBitgrglgort
-> Radiation evaluation is OnQOing (LE«unu:::?zi::uuuluulnuuziziz“luuulnD|Dnuuu:uunupuu;!EJ‘ (A3P60%randA3llg$I(;00)

- ASIC-like SEE mitigation required
= Flash is reconfigurable

» A limited number of reconfiguration cycles

» No on-line reconfiguration (while circuit is operating)
- Packages CCGA/LGA-484, 896

RT3PE3000L-CGB968

3 33
xxxxx

xxxxxx |
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Rad-Hard Reconfigurable FPGA (Iii)

¢ The Atmel ATF280E [8]
= Non-ITAR (European)

— It has hardened ATF280E AT69170E

» Configuration memory il o

» User FFs e T

» User memory ] =i oy o
— TID tested upto 300Krad i i &, ¥ y -
— Packages: CQFP-84/208/256 el ] s ﬁ £l

IR Z .20 I

— Development of larger devices is planned in cooperation between:
» Atmel Aerospace
» Abound Logic (http://www.aboundlogic.com)
» CNES (French Space Agency)
» JAXXA (Japanese Space Agency)
» ESA (European Space Agency)
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Rad-Hard FPGA Capacity Overview

4
QPRO-R Virtex-4 LX V2%
"7,‘ (90 nm) ;
9 /
© /
D 3 - /
= 3 /
> / & SIRF Virtex-5 7
— /  XQRAVFX140 (65nm) (65 nm)
g 7 VEFX130T
Q 5 /
& 2 ) /
(&) QPRO-R Virtex-ll ,
L (0-15um) 7yarav6000
©
& /
o 11 RT3PE(*
S QPRO-R Virtex // RTAX TIPE()
o RTSX ©22pmy ,  (015em '
~ (0.25 pm) AT40KEL 4’ T280F
RTSX72SU  (0.35 um)
O ’-—'_'_¥_ I T T I T I T I T

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

F
=
-

_
(
4

f-

|+Atmel — ¢~ Xilinx (non rad-hard) —a— Xilinx (mitigated) — #— - Actel —e— Actel (mitigated) |
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Single Event Effects, SEE (recapitulation)

¢ Single Event Latchup (SEL) Heavy lon (Ic%m Ray’)

¢ Single Event Transients (SET) ; ;
= in clocks and resets ;Iﬁ L rLL L L

» Glitches on clocks — change of state, - > i ‘ 0 n* L |
f t I f It n-SuUstral% ‘: $- p-Wall
unctional Tau Epitaxial Layer (Lightly Doped)™ = Jf * - \ J
» Asynchronous resets are clock-like 3] F il
. IS Substrate (Heavily Doped) - + g + -
signa

— Single Event Transients (SET) in combinatorial logic
» SEE glitches in combinatorial logic behave like cross-talk effects
» Causes SEU when arriving at flip-flop/memory D-input during clock edge
» Sensitivity increases with clock frequency
» Synchronous resets are (normal) combinatorial signals

¢ Single Event Upset (SEU) in Flip-Flops and SRAM
— SEE glitch inside the bistable feedback loop of storage point

- Immediate bit flip — loss of information, change of state, functional fault

e
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SEEs in antifuse FPGASs (l)
¢ Actel Antifuse FPGAs (RTSX-SU and RTAX-S/SL families):

= Routing is done with antifuse (passive); no upset effect.
— DFFs, rad-hard at transistor level [22]:
» Simplified version of the non-hardened D FF:

» SEU hardened D FF:

— Internal memories are
not “rad-hard’:

-

——

CL

» Mitigation techniques
at RTL level required (requirements-dependent)

T q_%_c_xi
1_7—%_»1

CLK
CLK
o

CLK

\\kk\\\ N
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SEEs in antifuse FPGAs (il)

¢ However, the overall radiation hardness of the DFFs has 2
components [3]:
— SEU in the D FFs: DFF CROSS SECTION

» radiation hardened

» Causes SEU when arriving

to the FF

O 'seu/DFF

Data Clock
/ ACTEL RCELL — Localized TMR e COMPOSITE CROSS SECTION

— SEU

Glitch on Shared
input will not get D >
voted out >

Wired-OR Frequenc
cma \l;eoter q y

\Y
L

(ACTEL DFF primitive equivalence)
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SEEs in antifuse FPGAs (Illl)

¢ See report [3] for details on the radiation experiment:

7x10®

6x10® — Test Frequency
—_ -®— 15MHz
S 5x10% 4 | @~ 37.5MHz
o = T7E5MH=z=
§ 4x10® 4 | -@= 150MHz
=
o

T T T
0 10 20 30 40 50 60 70 80

Effective LET (MeVecm?2/mg)

Figure 16: LET vs. Cross Section: multiple frequencies, data pattern = checkerboard,
4F4L architecture
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SEEs in non-hardened SRAM FPGA

¢ Single Event Upsets (SEU) in configuration memory

= In SRAM FPGA, the circuit “itself”’ is stored in a RAM.
A bit flip can modify the circuit functionality — e.g.

» Modify a look-up-table (combinatorial function)
» Changing IO configuration (revert 10 direction)
» Causing an open connection

» Causing a short circuit

+ Single Event Functional Interrupt (SEFI)

= Defined in [2]: SEFI is an SEE that results in the interface of the normal
operation of a complex digital circuit. SEFI is typically used to indicate a
failure in a support circuit, such as:

» a region of configuration memory, or the entire configuration.
» loss of JTAG or configuration capability

» Clock generators

» JTAG functionality

» power on reset

(Y
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Mitigation of SEU in User Logic

¢ Standard synchronous RTL design

combinatorial logi

sequential sequential
logic

logic logic

¢ TMR and single voters for flip-flops for hard-wired logic (ASIC)

— —> — —>
> 5 > - 5 > > T
+> o » o s o
LZ -, = LZ -, = LZ' -, =
sequential sequential sequential
logic logic

logic

¢ Functional TMR (FTMR) [4] for SRAM (reprogrammable) FPGA

. L 1 | ] |
SISE LI D E
sequential sequential sequential
logic logic logic
(Y
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FTMR-XTMR

¢ FTMR is based on full triplication of the design and majority
voting at all flip-flop inputs and/or outputs
— Tolerates single bit flips anywhere in user or configuration memory
» Bit flips are “voted” out in the next clock cycle
= Mitigated SET effects (glitches in clocks and combinatorial logic)

— The VHDL approach presented in [4] requires a special coding style, it is
synthesis and P&R tool dependent and therefore difficult to use

¢ XTMR development by Xilinx has a very similar topology
— Voters only in the feedback paths (counters, state machines)

» Bit flips are voter out in N clock cycles
(N = number of stages of linear data path)

» Less area and routing overhead
- Implemented automatically by the TMRTool [5]
= Independent of HDL coding style and synthesis tool
- Well integrated with the ISE tool chain
— Also triples primary 10 signals

(s, . . . . .
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Multiple SEU - Configuration Scrubbing
¢ Multiple bit flips can be

— Single bit flips (SEU), accumulated over time
— A single particle flipping several bits (Multiple Bit Upset — MBU )

¢ Neither XTMR nor FTMR tolerate multiple bit flips
—> Refresh of configuration memory at regular intervals required
— Background configuration scrubbing by partial reconfiguration [8]
» Without stopping operation of the user design function

= Scrubbing protects against accumulated single bit flips, provided the
scrubbing rate is several times faster than the statistical bit upset rate

— Requires an external rad-hard scrubbing controller
¢ Scrubbing does not protect against MBU
- MBU are rare in current technology

— MBU could become an issue in future technology generations
- MBU usually affects physically adjacent memory cells
- MBU mitigation requires in-depth knowledge of the chip topology

\\\k&k\\ \
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XTMR cross-section added value

¢ Data from [] V2 - Design Variant
- - A 2-Clock - FFmatrix © 2-Clock - FFT + 2-Clock - LUTmatrix 0 2-Clock - M18matrix
‘ DeVlce. a 3-Clock - FFmatrix e 3-Clock - FFT % 3-Clock - LUTmatrix gg3-Clock - M18matrix
- XQR3V3000 10502 ¥ g
Die size ~16x16 mm? -, f g
1.0E-03 3 é ﬁ
J .
g [ : .
83 10504 -
2 i ~ X
303 é o X |
5y o ©® - = .
% E 1.0E-05 ¢ * u a
[ - i XX
¢ Results: : .
Yy m
— 2 clock: XTMR not active R I
— 3 clock: XTMR active :
1.0E_07 JALA%AAlJ}lAJL}lel{ALlA#AAAL#jjlle
0 10 20 30 40 50 60 70
Clear added value when LET [ MeVi(mgiem2)
us lng X T MR eooo Fig 6.5 Recorded cross sections for the modules FFT, FFmatrix, LUTmatrix and
B UT iS l- t enOug h 92 MI18matrix plotted as a function of LET for the V2 design variant. Data are only shown
) o for test runs with low flux.
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RoRA: Mitigation at Place and Route

¢ In spite of (X)TMR, single point failures (SPF) still exist
— Optimization during layout leads to close-proximity implementation
» Flipping one bit may create a short between two voter domains
» Flipping one bit may change a constant (O or 1) used in two domains
= Malfunction in two domains at a time can not be voted out any more

I

2y

sequential
logic

sequential
logic

sequential
logic

¢ The Reliability oriented place & Route Algorithm (RoRA) [7]
— Disentangles the three voter domains
— Reduces the number of SPF (bits affecting several resources)

— Besides giving additional fault tolerance to (X)TMR designs,
RoRA is applicable also to non- or partial-TMR designs

(Y
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Protection of SRAM blocks (1)

¢ EDAC = Error Detection And Correction
= Usually corrects single and detects multiple bit flips per memory word
—> Regular access required to preventing error accumulation (scrubbing)
— Control state machine required to rewrite corrected data
= Impact on max. clock frequency (XOR tree)

+ Parity protection allows detection but no hardware correction

— When redundant data is available elsewhere in the system
» Embedded cache memories (duplicates of external memory) > LEON2-FT
» Duplicated memories (reload correct data from replica) > LEON3-FT

= On error: reload in by hardware state machine or software (reboot)
¢ Proprietary solutions from FPGA vendors
- ACTEL core generator [21]
» EDAC and scrubbing
= XILINX XTMR [5]
» Triplication, voting and scrubbing
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Protection of SRAM blocks (2)

¢ EDAC protected memory o Triplicated memory (Xilinx)
(Actel) — Scrubbing in background using

— Scrubbing takes place only in spare port of dual-port memory

idle mode (we, re = inactive) — Triplication against configuration
upset RAMB4 S& S16

one A
WEN A OUutA

— Required memory width
» 18-bit for data bits <= 12 ENA
» 36-bit for 12 < data bits <= 29 100 0 Data A

: CLKb outB
WEN B

» 54-bit for 20 <data bits <= 47 ETovcy | TRz | TRV 10 “

15:0

||
|JJJJZIJ
N |- | O

RAMB4 S# S16

Data A
CLK A

WEN A CUtA

EN A

edaci/edacii Block TMR
wdata COUNTER

wdata -

Encoder A IEI - . ADDR A
Axcelerator \ —————— 100 © Data A TRo

RAM CLKb outR

1
______ WEN B TR1 |
Block rdata | rdata N - ?0 = ENB TRz | TRV 16
»| Decoder [ = ADDRB —

error flags 15:0

3
RAMB4 S# S16

8ata A
LK A |
WEN A CUtA

EN A
ADDR A

slowdown flag

waddr, raddr Scrubbing
we.re B Control Timer

Data A
CLKb outp TRo
WEN B TR1

ENB TRz | TRV 16
03 ADDR B o

waddr, raddr, we,re 10:0

Tcstn*%, error and
optiohal ports

L [of<]o

15:0

?—
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Other Mitigation Techniques (1)

¢ Block and device level redundancy [6]

= Implementation of each design is plain (non-voted)

— Design/verification of plain blocks/devices does not require special tools

— 2x1 implementation (— error detection and restart)

= 3x1 or 2x2 implementation (— continue operation in case of fault)

Xilinx FPGA 1

User Design

User Design
(Duplicate)

Xilinx FPGA 2

User Design
(Duplicate)

Radiation-
Hardened Voter [— ™
Device

User Design
(Duplicate)

X987 _04_031707

Figure 4: Dual FPGAs implementation

|~
{4

2esa._

Microelectronics Section
1= — =101

Xilinx FPGA 1

User Design

Xilinx FPGA 2

User Design
(Duplicate)

Xilinx FPGA 3

Radiation-
Hardened Voter |—
Device

User Design
(Duplicate)

Xa87 05 031707

Figure 5: Three FPGA Implementation

Il = 8= = b B = KA
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Other Mitigation Techniques (2)

.. Block and device level redundancy
— Redundant blocks or devices must be re-synchronised

» Context copying when error in one instance is detected

» Reset system or restore context from snapshot stored at regular intervals
— Device TMR overcomes shortage of gate resources and IO pins
— Device TMR also protects against SEFI
— Device TMR requires separate rad-hard voting and reconfiguration unit
— Also applied for non-FPGA COTS devices [11]

¢ Temporal redundancy
—> Repeat processing two or more times and vote resuit
- Employed for embedded microprocessors

+ Partial (Selective) TMR [12]

= Triple only the most sensitive parts of a system
— Trade fault tolerance against complexity, but difficult to validate

¢ Single instance and watchdog

\\

(Y
\\ &\&\ esa Microelectronics Section 23th April 2009 Slide 29/43

X& EmOINEDEIIELINLI DR DB MW ERE R B




SEEs in Rad-Hard SRAM FPGA

¢ FPGAs: all Atmel and future SIRF Xilinx
¢ Single Event Upset (SEU) in configuration memory

- No effect as the memory cells are radiation hardened
A bit flip can NOT modify the circuit functionality — e.g.

» NO modification of look-up-tables (combinatorial function)
» NO changing of the IO configuration (revert 10 direction)
» NO cause an open connection
» NO cause a short circuit
¢ Single Event Functional Interrupts (SEFI)
= Under study

¢ UserD FFs

- No effect as they are radiation hardened
¢ Open points:

— Hard macros hardness: TBD Should higher level mitigation
— Final radiation result: TBD techniques be applied?
\\\\\K\W\ Microelectronics Section 23t April 2009 Slide 30/43
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Verification of fault-tolerant designs

+ Verification has to answer three main questions
- Does the mitigation strategy provide adequate fault tolerance?
» Radiation testing, fault simulation and fault emulation
— Was the planned mitigation strategy properly implemented?
» Analysis of netlist and physical implementation (layout),
— Are we sure the TMR did not break the circuit function?
» Dedicated formal verification tools are required

+ Standard verification methods and tools are not sufficient
= Simulation of a TMR netlist “works” with a defect in one voter domain
- COTS formal verification tools are confused by TMR
= Structural verification of TMR ASIC designs: InFault [19]
- NASA/Mentor: Formal verification for TMR designs [1]
- STAR, the STatic AnalyzeR tool [20]
» Performs static analysis of a TMR circuit layout in SRAM FPGA
» ldentifies critical configuration bits (single bit affecting two voter domains)
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Radiation Testing

¢ There is nothing like real data to f' up a great theory
- Richard Katz, NASA Office of Logic Design, circa 1995
¢ Heavy lon Testing

— Using fission products (e.g. Californium 252) [13]
— Cyclotron, e.g. UCL [14] .

+ Other Radiation Testing

- Proton testing e.g. PSI [15]
Protons penetrate silicon — backside irradiation, suitable for flip-chip

~ Microelectronics Section 23t April 2009 Slide 32/43
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FPGA radiation: RT ProASIC3

& A radiation test activity has just started under ESA contract;
with a duration of 12 months

+ Objective:
— Get further insight in the radiation sensitivity of RT ProASIC3 FPGAs by

performing
» Heavy ion SEE tests :
» Proton SEE tests PActel
» Co-60 TID tests ¢
— Main concern of this FPGA are: & i

» SET sensitiveness

» TID sensitiveness (currently published as 15 Krad for programming
functionality)

=
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Fault Simulation and Emulation

+ Fault injection to user flip-flops (but not configuration memory)
- SST, an SEU simulation tool [16]
= FT-Unshades for user flip-flops and memory [17]

+ Fault injection to conflguratlon memory by FPGA emulation
— The FLIPPER test system [18] "

# P_FFMatrix_v1

WP_FFMatrix_v2

1,00€-01 + A P_FFMatrix_Rvl ; /;?
X P_FFMatrix_Rv2 ! o

X RAD FFmatrix Cmp(A&B)_v1 T

RAD FFmatrix Cmp(A&B)_v2

1,00E-03 +

Failure probability

1,00E-04 +

1,00E-05
01 1 10 100

Injections (Cfg bit upsets)

Figure 13: Comparison between injection and radiation data for the FFmatrix module
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Selection of a Mitigation Strategy

¢ SEE mitigation has area and performance overhead

¢ Trade-off between cost and fault tolerance
— Same hardening scheme for the complete design is easiest to implement
— Selective hardening of critical parts is often the only acceptable solution
— Life time requirement of applications can be very different

Data Criticality Low
Error Persistence No Yes
. No
= D Mitigation
£ Days
=
E’ Scrubbing
‘= | Months
(-1
Q.
o -
Continuous

/‘-
e
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Reconfigurability: motivation

¢ Question: is reconfigurable/ adaptive hardware useful in
Space?
— It enables resources usage optimization (HW resources time sharing)
— |t enables adaption to miss-functions
- It gives flexibility to hardware:
» Same hardware reused for different applications
» Easier adaptation to different and/or new standards
- AND FOR MANY MORE REASONS, YES

¢ Current systems actually include reconfigurability:
— Software currently gives the “reconfigurability” to the systems

¢ The FPGAs to be potentially reconfigured in space shall fulfill
the quality and radiation requirements
— When mitigation is required, reconfigurability shall be compatible with it

¢ FPGA currently used in the big majority of space designs:
— Antifuse; so no reprogrammable FPGAS
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Reconfigurability: SDR

o Example, Activity to be finished in 3Q09
- Software Defined Radio (SDR):
» Processor Signal Processing Chain:

Input Multicarrier Decoder & D/L Channel

Channel Demodulator Output Stream Formatter &
Demux Formatter Modulator

¢ Reconfigurability levels (possible classification):

— Full reconfiguration:

» Full reconfiguration of the processor with new algorithms
— Partial reconfiguration with new/upgrade algorithms:

» Only a portion of the design in the FPGA gets reconfigured
- Parameters modification:

» Afects only the parameters (same as with SW)
— Add-on algorithms:

» Adding one or more algorithms to the current chain.
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Reconfigurability: GMDR (1)

¢ FPGA Based Generic Module and Dynamic Reconfigurator:
Activity Objectives:
— Design, develop a payload data processing module demonstrator
utilizing reprogrammable FPGAs as core data processing unit.

— Allow for a range of data processing algorithms to be implemented to
cover a wide range of applications.

— Fault tolerant design

= In-flight reconfigurable core of FPGAs

—> Focus on the SW Development Environment kit to exploit the unit’s
capabilities.

= Run Performance Benchmarks based on CCSDS Image compression
standards

¢ Activity Start-up Q1 09
¢ Duration 24 Months
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Reconfigurability: GMDR (Il)

¢ FPGA Based Generic Module and Dynamic Reconfigurator:

Instrument

HDR
Instrument

General instrument I/F

System Controller

Avionics Bus I/F
* SpW (RMAP)
* MIL-STD-1553
* GPIO

LDR
Instrument

SpW I/F towards payload

CAN I/F towards low
data rate instruments

=
//
DPRM
Parallel Serial 110 CAN
1/0 E.g.RS422 \F \-\\
General Instru rfaces Standardized Instrument I/F
Analog
[ s s e
(] Pre Amp
Inter. ; / Stage ?}
1] DFPGA L]
ADC
2 Iy Core— -
Analog I/0
]
§ ,/’/ /:/’ / / Working
. Memory @ Transducer
System v
Controlle B P )
Configuration W
/.i// /5,-/ Memory Router
4
Avioni Interfaces SpaceWire
MMMMMMM / ——— CAN bus
15538 /,.-'

EGSE

1553B bus

—— Discrete |0

¥]  Reconfigurable
Core

Cluster of
Reprogrammable FPGA's

Configuration Memory
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Reconfigurability: future FPGAs

¢ Reconfigurable FPGAs: either SRAM-based or Flash-based

¢ Current offer:
— Rad-Hard SRAM-based:
» Atmel AT40K; small capacity
— Rad-Tolerand SRAM-based:

» As it has been seen, big efforts required in order to mitigate against
radiation

» Packaging offered are currently not qualified
— Rad-Hard Flash-based:

» Mitigation techniques required; relatively less efforts that SRAM

¢ Future:
— High capacity Rad-Hard SRAM-FPGAs and Flash-based FPGAs
» Xilinx SIRF is ITAR

¢ Question: Will the mitigation techniques be useful in the
future?
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Rad-Hard FPGA Capacity Overview

4 —
2 The rest are
‘Eé’a 3 reprogrammable
> Only OTP FPGA
S 1
8. | \
Q 2 - ;
O I X
L / N,
8 -~ TS,
o 11 / K RT3PE(*
2 RTAX (")
8') 1 B 15 (0.13 um)
- RTSX. ;

(0.25 um)_'
SX72SUJ
O ﬂ | I I I |

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

‘+Atme| Xilinx (non rad-hard) —— Xilinx (mitigated) Actel —e— Actel (mitigated) |
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Mitigation efforts at RTL level

¢ Future High capacity Rad-Hard SRAM-based FPGAs

- Will have lower level mitigation

e BUT
— Rad-Tolerand SRAM-based:
» Are currently not ITAR; so might be interesting for some applications
— Rad-Hard Flash-based:
» Mitigation techniques are anyhow required
- High capacity Rad-Hard SRAM-based FPGAs and Flash-based FPGAs

» To be further investigated the added value of extra higher-level mitigation
techniques
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Conclusion

¢ ESA involved in FPGA device developments
—> FPGAs extensively used in space designs !!

¢ ESA involved in tools to verify the correct implementation of
the mitigation techniques
= Fault Injection Systems
» FLIPPER, FT-UNSHADES, SST (simulation)
— Analytical
» InFault, STAR

¢ ESA involved in Radiation testing of FPGAs

¢ ESA involved in reconfigurability
— Software defined Radio, Generic Module and Dynamic Reconfigurator

+ Will the mitigation techniques be required in the future?
= Non rad-hard SRAM based FPGAs might be used
— Flash-based will require mitigation techniques

Questions?
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Main FPGA vendors for space

FPGA Vendor
Characteristics
XILINX (HQ: USA) ACTEL (HQ: USA) ATMEL (F) EU product !
Reprogrammabi . One-time-programmable/ .
lity Unlimited “limited” (Flash-based) Unlimited
Technolo SRAM-based, .35-.065um/ Anti-fuse (ONO and M2M), Hardened SRAM-based, .35,
9y 0.65um 0.8-0.15um/ 0.13um Flash .18um
Radiation No TID, SEL; configuration Ql’zsg/D'l,'lgEil;sjulzaZ-g IaC'gizZ{ISET No TID, SEL ; Rad hardened
Hardness logic is SEU sensitive/ SIRF SEU g g SRAM, CMOS libraries
?qasplacc;ty u(m 1Mgates 250Kgates /600 Kgates (non- 40Kgates
gates) qu- 2-3Mgates (2007) 500Kgates (2007) / mitigated) 280Kgates (4Q09)
ITAR No / Yes Yes /No No
i only small ones available yet
more SE.U sens:tlv_e (et ’ Can be programmed only once, | (40K gates), though new
Weaknesses Hardening by design at various ITAR lies. / TID
Jevels needed / ITAR applies. larger ones (280K) due 2009,
New technology, not used yet
.. e Unlimited reprogramability;
DTS A ETELT, Rad hard, Higher level of space | Non ITAR, fabricated in EU:
Many functional macrocell pr s
Strengths . qualification / hardened SRAM, clock and
PR (DR S, SEeie) Reprogrammable reset
large size / + Rad-Hard prog

-
/] ‘fﬁ'

//’

Slide 49/43

=

Microelectronics Section 23t April 2009

=l EEOE=IIE1]

-CSd

Il = 8= = b B = KA



FPGA and ASIC trends

¢ FPGA and ASIC trends SRAM.- FPGA:

reprogrammable,
growing in capacity and

Relative number of ASIC vs. - rad hardness, less
FPGA in a SpaceCraft expensive, faster time to
A market than ASIC

/ Anti-fuse FPGA:
/ ........... > growing In capacity, less

: . expensive, faster time to
// market than ASIC
I : ‘A

ASIC: more functions in

v

, ! Time
Late 90’ 2007 | less area, always best
201X performance, fewer
SRAM-FPGAs go rad hard numbers in favour of
-> Xilinx US “SIRF programme” succeeds, FPGAs ?nd 1.ncreasmg
-> 3rd generation of larger rad hard Atmel developing times & costs
FPGAs
&
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Actel - RTAX-S/SL

¢ C-Cell and R-Cell detail

FCI
:{gf}}_ D— PRE [—Q
) E—G
D[0:3] — C-cell }——Y K — cLr
DB —]
D1 D3 BO BI CEN FCl N
(Positive Edge Triggered)
FCO
C-Cell R-Cell
DIN (user signals) =
DCIN = L
A SEVU
Enhanced
HCLKAB/UD —> A ﬁ))o D-FF
>
CLKE/FIGH —» 7
Internal Logic —»
o Www
- oo
09 &&
CKS S1 S0

j—
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Xilinx - Virtex-4 CLB

¢ Logic resources in One CLB (Configurable Logic Block):

- 4 Slices
= 8 4-input LUTs (Logic or Distributed RAM o«w:;gg‘)i ?Lg;ft)nm
~ 8 Flip-Flops I | A
— 8 MULT_ANDs P L sE) |l
— 2 Arithmetic and : | 1 :
Carry Chains - — I
T COUT 1 J IMerconnect
— 64 bits of Distributed ~ [swen| | b T 1 ] wNeohion
nx l - !
R.AM (S.LICEM. only) — SUCE {2) : >
— 64 bits Shift Registers | | i
SLICEM onl | : I
( y) — il = i
e o S e
SHIFTOUT CIN I 23070_2_01_OT4504
Figure 5-1: Arrangement of Slices within the CLB
e
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Atmel - The Cell

Figure 5. The Cell
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X = Diagonal Direct connect or Bus
Y = Orthogonal Direct Connector Bus
W = Bus Connection

Z = Bus Connection

FB = Internal Feed back
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ECSS-Q-60-02

Management/QA

Phases and Tasks

Reauirements

v
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Identification of ASIC/FPGA
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Risk analysis

MoM:

Verifi-
cation

Architectural Design
Architectural Definition
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Design Reports

Design Documentation and Outputs

DVP
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Documentation
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Detailed Design
Design Entry
Metlist Generation
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»( Data Sheet
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Documentation

Figure 1 (Cont’d)
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RTAX-S

o SEE frequency dependency [3]:

7x108
O Alternatina Data Pattern
6x10-% 1 @ Static Zero Data Pattern —.‘_
O static One Data Pattern t
= 5x10® - —
E ;
N ’
£ 4x108 >25ordersof
2 magnitude of
§ 3x10¢ - difference ,
©
2x10°8 —
1x10-10 cm2/bit '.'
1x10°8 N\
u
0 18.8
Frequency (MHZz)

Figure 17: 4F4L Data Patterns at18.8 MHz and 150MHz
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