Use of reconfigurable devices in space Problems and possible solutions

Massimo Violante Politecnico di Torino Torino, Italy

Acknowledgment

Miguel Aguirre Monica Alderighi **Bernard Bancelin** Niccolò Battezzati Alexandre Bocquillon Nadine Buard Gian Carlo Cardarilli Luigi Carro Fabio Casini Marco Ceschia Filomena Decuzzi Simone Gerardin Hipolito Guzman

Fernanda Lima Kastensmidt Andrea Manuzzato **George Medias** Cristina Meinhardt **David Merodio** Florent Miller Alessandro Paccagnella Alessandro Panariti Christian Poivey Sana Rezgui Adelio Salsano Luca Sterpone **Roland Weigand**

Goal

To present the problems related to the use of reprogrammable FPGAs in the space radioactive environment and to outline available solutions

Outline

- Introduction
- The problem
- Mitigation techniques
- Conclusions

Introduction

- There is a growing interest for using re-programmable FPGA devices in space applications
 - Low-cost for low production volumes w.r.t. ASICs
 - Very short time-to-market
 - Higher versatility (to fix bugs, to extend functionalities)
 - Adaptability (reconfigurable computing)

FPGA Overview

FPGA Overview

FPGA Overview

configured to implement a user circuit

- Ionizing radiation may result in:
 - Single Event Effect (SEE):
 - Transient, possibly persistent
 - Non destructive
 - Total Ionizing Dose Effect (TID):
 - Permanent
 - Non destructive
 - Single Event Latchup (SEL):
 - Permanent
 - Destructive

SEE in FF

SEE in CM

SEU in the CM affecting the routing

SEE in CM

12

SEE in CCL→ SEFI
SEE on (async) lines → SET
SEU in the CCL

Mitigation techniques

- Different solutions are available:
 - Single-chip HW redundancy
 - Multi-chip HW redundancy
 - Custom silicon design
 - Custom process design
- Selecting the mitigation technique is a difficult task as it has to consider:
 - The device cross section
 - The space environment the device aims at
 - The application the device is used in

Case study

- Commercial of the shelf:
 - Virtex 4 XC4VFX140
 - CM (SRAM) and process are standard
 - RT ProASIC3 RT3PE3000L
 - CM (Flash) and process are standard
- Radiation hardened:
 - Atmel ATF280E
 - CM (SRAM) is designed to be insensitive to SEE up to a certain LET
 - Silicon process is designed to be insensitive to TID/SEL up to a certain LET

	Logic cells	1/0
Virtex 4 XC4VFX140	142,128	896
RT ProASIC3 RT3PE3000L	75,364	620
ATF280E	14,400	340

	SEU	SEU in CM		SEU in FF		SET		TID	S	EFI
	LET _{Th}	σ_{Sat} /bit	LET _{Th}	σ_{Sat} /bit	LET _{Th}	σ _{Sat} /bit	LET _{Th}		LET _{Th}	σ_{Sat}
Virtex 4	< 1	4x10 ⁻⁸	< 1	4x10 ⁻⁸	?	?	> 90	300	< 1	6x10 ⁻⁵
RT ProASIC3	> 96	0	6	2x10 ⁻⁷	4	2x10 ⁻⁶	> 96	15	?	?
ATF280E	> 30	2x10 ⁻⁸	?	?	?	?	> 80	300	?	?

LET is expressed in MeVcm²/mg σ_{Sat} is expressed in cm²/device or cm²/bit TID is krad (Si)

Mitigation is likely to be needed for SEU in CM and FF, SET, and SEFI

	SEU in CM		SEU in FF		SET		SEL	TID	S	EFI
	LETTh	σ_{Sat} /bit	LET _{Th}	σ_{Sat} /bit	LET _{Th}	σ _{Sat} /bit	LET_Th		LET _{Th}	σ_{Sat}
Virtex 4	< 1	4x10 ⁻⁸	< 1	4x10 ⁻⁸	?	?	> 90	300	< 1	6x10 ⁻⁵
RT ProASIC3	> 96	0	6	2x10-7	4	2x10-•	> 96	15	?	?
ATF280E	> 30	2x10 ⁻⁸	?	?	?	?	> 80	300	?	?

LET is expressed in MeVcm²/mg σ_{Sat} is expressed in cm²/device or cm²/bit TID is krad (Si)

SEE mitigation techniques

SRAM-based CM:

- SEE in the CM (SEU):
 - Masked using HW redundancy (TMR), and
 - Corrected using CM scrubbing
 - SEE in CM is persistent \rightarrow re-programming is needed
- SEE in the I/O and LB (SEU/SET):
 - Masked using in-chip hardware redundancy
- SEE in CCL (SEFI):
 - Masked using chip-level hardware redundancy

CM scrubbing

TMR for SEE in CM/LB

TMR for SEE in CM/LB

TMR SEE in CM/I/O

Redundancy for SEE in CCL

X987 05 031707

Radiation-

Hardened Voter

Device

Applying SEE mitigation

- Requires design effort:
 - Manual design for scrubbing, and chip-level redundancy
 - Automated for in-chip redundancy:
 - X-TMR makes design mitigation
 - Care must be taken to place & route the design to preserve robust architecture
 - Problems with SEE in CM that provoke multiple errors in FPGA resources
- Correct cocktail of mitigation techniques should be selected considering the application, and the environment

LET is expressed in MeVcm²/mg σ_{Sat} is expressed in cm²/device or cm²/bit TID is krad (Si)

SEE mitigation techniques

Flash-based CM:

- SEE in CM are not an issue
- SEE in the I/O and LB (SEU/SET):
 - Masked using in-chip hardware redundancy
- SEE in CCL (SEFI):
 - Likely to be masked using chip-level hardware redundancy

SEE in LB

 SEE in LB of Flash-based device can produce SET → time redundancy is used

I/O must be triplicated and three different I/O banks used.

Minor mitigation is likely to be needed:

- CM scrubbing
- Device already includes CM checker

	SEU in CM		SEU in FF		SET		SEL	TID	S	EFI	
	LET _{Th}	σ _{Sat} ∕b∕it	LET _{Th}	σ _{Sat} /bit	LET _{Th}	σ _{Sat} /bit	LET _{Th}		LET _{Th}	σ_{Sat}	
Virtex 4	< 1	4x10 ⁻⁸	< 1	4x10 ⁻⁸	?	?	> 90	300	< 1	6x10 ⁻⁵	
RT ProASIC3	> 96	0	6	2x10 ⁻⁷	4	2x10 ⁻⁶	> 96	15	?	?	
ATF280E	> 30	2x10 ⁻⁸	?	?	?	?	> 80	300	?	?	

LET is expressed in MeVcm²/mg σ_{Sat} is expressed in cm²/device or cm²/bit TID is krad (Si)

GEO orbit (like GAIA, Herschel, Plank,...)
CREME 96 LET Spectra

SEE in CM

	LET _{Th}	σ _{Sat} [cm²/bit]	LET	Background GCR flux [#/cm ² s]	Background GCR SEE rate [#/bit s]
Virtex 4	< 1	4x10 ⁻⁸	0.76	2.6x10 ⁻³	1.04x10 ⁻¹⁰
RT ProASIC3	> 96	0	94.6	3.5x10 ⁻¹³	0
ATF280E	> 30	2x10 ⁻⁸	38.3	4.8x10 ⁻¹⁰	9.6x10 ⁻¹⁸

• Example:

- Virtex 4 XC4VFX140 has 47,856,512 CM bits → Background GCR produces 4,98x10⁻³ SEU/s in CM (in worst day can be 49 SEU/s)
- RT ProASIC3 is expected to have 0 SEU
- ATF280E has about 4M bits \rightarrow 3,8x10⁻¹¹ SEU/s

- Virtex 4:
 - 4,98x10⁻³ SEU/s in CM \rightarrow 1 SEU in CM every 3 minutes
 - Scrubbing is needed and TMR may be needed depending on the application
- RT ProASIC3 and ATF280E:
 - Nothing has to be done

SEE in FF/SET

	LET _{Th}	σ _{Sat} [cm²/bit]	LET	Background GCR flux [#/cm ² s]	Background GCR SEE rate [#/bit s]
Virtex 4	< 1	4x10 ⁻⁸	0.76	2.6x10 ⁻³	1.04x10 ⁻¹⁰
RT ProASIC3	6	2x10 ⁻⁷	6.27	2.9x10 ⁻⁵	5.8x10 ⁻¹²
ATF280E	?	?	?	?	?

• Example:

- Virtex 4 XC4VFX140 has 126,336 FFs → Background GCR produces 1.31x10⁻⁵ SEU/s in FFs
- RT ProASIC3 RT3PE3000L has 75,264 Tiles → Background GCR produces 4.36x10⁻⁷ SEU/s in FFs, and it is expected to give 4.36x10⁻⁶ SET/s

• Virtex 4:

- 1.31×10^{-5} SEU/s in FF \rightarrow 1 SEU in FF every 22 hours
- TMR may be needed depending on the application

RT ProASIC3:

- 4.36x10⁻⁷ SEU/s in FFs \rightarrow 1 SEU in FF every 27 days
- 4.36x10⁻⁶ SET/s \rightarrow 1 SET every 2.7 days
- TMR FF and GG may be needed depending on the application

• ATF280E:

Nothing has to be done

SEFI

	LET _{Th}	σ _{Sat} [cm²]	LET	Background GCR flux [#/cm ² s]	Background GCR SEFI rate [#/s]
Virtex 4	< 1	6x10 ⁻⁵	0.76	2.6x10 ⁻³	(1.56×10^{-7})
RT ProASIC3	?	?	?	?	7 ?
ATF280E	?	?	?	?	?

1 SEFI every 74 days Action to be taken depends on the application

Revising the resource figures

	No mitiga	ation	TMR		
	Logic cells	1/0	Logic cells	1/0	Notes
Virtex 4 XC4VFX140	142,128	896	40,608	298	3.5x on logic cells, 3x on I/O
RT ProASIC3 RT3PE3000L	75,364	620	37,682	206	2x on logic cells, 3x on I/O
ATF280E	14,400	340	14,400	340	No overhead

Revising the resource figures

	No mitiga	ation	TMR							
	Logic cells	1/0	Logic cells	1/0	Notes					
Virtex 4 XC4VFX140	142,128	896	40,608	298	3.5x on logic cells, 3x on I/O					
RT ProASIC3 RT3PE3000L	75,364	620	37,682	206	2x on logic cells, 3x on I/O					
ATF280E	14,400	340	14,400	340	No overhead					
	Very sim	ilar fig	gures.							

Revising the resource figures

	No mitigation		TMR							
	Logic cells	1/0	Logic cells	1/0	Notes					
Virtex 4 XC4VFX140	142,128	896	40,608	298	3.5x on logic cells, 3x on I/O					
RT ProASIC3 RT3PE3000L	75,364	620	37,682	206	2x on logic cells, 3x on I/O					
ATF280E	14,400	340	14,400	340	No overhead					
ATF280E 14,400 340 14,400 340 No overhead										

Very small device compared to the others, but good for I/O.

Conclusions

- Re-programmable devices are available for space use, but
- Their use is not trivial:
 - Mitigation is needed
 - A lot of design efforts are needed
 - A lot of validation efforts are needed
- There is not turn-key solution...

Conclusions

- Re-programmable devices are available for space use, but
- Their use is not trivial:
 - Mitigation is needed
 - A lot of design efforts are needed
 - A lot of validation efforts are needed
- There is not turn-key solution...and plenty of work for researchers

